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Dynamic multi-criteria scheduling
algorithm for smart home tasks in
fog-cloud loT systems

Ruchika Bhakhar™ & Rajender Singh Chhillar

The proliferation of Internet of Things (IoT) devices in smart homes has created a demand for efficient
computational task management across complex networks. This paper introduces the Dynamic
Multi-Criteria Scheduling (DMCS) algorithm, designed to enhance task scheduling in fog-cloud
computing environments for smart home applications. DMCS dynamically allocates tasks based on
criteria such as computational complexity, urgency, and data size, ensuring that time-sensitive tasks
are processed swiftly on fog nodes while resource-intensive computations are handled by cloud data
centers. The implementation of DMCS demonstrates significant improvements over conventional
scheduling algorithms, reducing makespan, operational costs, and energy consumption. By effectively
balancing immediate and delayed task execution, DMCS enhances system responsiveness and
overall computational efficiency in smart home environments. However, DMCS also faces limitations,
including computational overhead and scalability issues in larger networks. Future research will

focus on integrating advanced machine learning algorithms to refine task classification, enhancing
security measures, and expanding the framework’s applicability to various computing environments.
Ultimately, DMCS aims to provide a robust and adaptive scheduling solution capable of meeting the
complex requirements of modern loT ecosystems and improving the efficiency of smart homes.

Keywords Internet of Things, Dynamic scheduling, Multi-criteria optimization, Fog computing, Cloud
computing, Smart home

Abbreviations

IoT Internet of things

DMCS Dynamic multi-criteria scheduling

PSO Particle swarm optimization

GA Genetic algorithm

ACO Ant colony optimization

COA Cultural algorithm

MOSA Multi-objective simulated annealing

MoHHOTS Multiobjective Harris Hawks optimization-based task scheduling
AEO Artificial ecosystem-based optimization

NSGA-II Non-dominated sorting genetic algorithm II
MGWO Multi-objective grey wolf optimizer

EHEO Enhanced hybrid equilibrium optimizer

SSA Salp swarm algorithm

BWM Best worst method

OppoCWOA  Opposing chaotic whale optimization algorithm
HEFT Heterogeneous earliest finish time

DVES Dynamic voltage and frequency scaling

IWO-CA Invasive weed optimization and cultural algorithm
QoS Quality of service

E-AVOA-TS Enhanced African vultures optimization algorithm for task scheduling

The rapid expansion of the IoT, particularly in smart home systems, has led to a proliferation of interconnected
devices generating vast amounts of data and requiring substantial computational resources!. Managing these
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computational tasks efficiently is critical to ensure responsiveness, reliability, and user satisfaction in smart home
environments.

Cloud computing has traditionally provided scalable and flexible solutions for processing and storing the
immense data generated by IoT devices®. Its centralized resource management and scalability allow for seamless
integration and management of resources across global networks. However, despite its numerous benefits,
cloud computing faces significant challenges, particularly in handling latency and bandwidth constraints when
processing large-scale data remotely’. The distance between end devices and cloud data centers can result in
increased latency and network congestion, which is detrimental to time-sensitive IoT applications.

To mitigate these challenges, fog computing has emerged as a complementary paradigm that extends cloud
services to the edge of the network®. By decentralizing and extending computational processes closer to where
data originates, fog computing reduces latency and alleviates network congestion, enhancing the performance of
IoT applications®. This approach is particularly beneficial for applications requiring real-time analytics and rapid
data turnaround, such as autonomous vehicles, industrial automation, and healthcare monitoring systemsé.

In a fog-cloud computing environment, integrating both fog and cloud resources provides a balanced
approach to meet the computational demands of IoT systems’. Fog nodes handle latency-sensitive and real-time
tasks, while cloud data centers manage resource-intensive computations and long-term data storage. However,
effectively scheduling tasks across these heterogeneous and distributed resources presents significant challenges
due to the dynamic and unpredictable nature of IoT environments®.

Efficient task scheduling is vital for optimizing resource allocation, minimizing response times, and
maintaining a high quality of service’. The complexity of scheduling tasks in fog-cloud environments,
characterized by varying computational needs and resource availability, calls for advanced scheduling solutions
that can dynamically adapt to fluctuating conditions and optimize performance in real-time.

Metaheuristic algorithms have been extensively applied to solve the NP-hard problems associated with task
scheduling in fog-cloud systems'®. These algorithms, inspired by natural and biological processes, offer robust
mechanisms for exploring complex and multi-dimensional solution spaces efficiently. Prominent among these
are Genetic Algorithms (GA)'!, Particle Swarm Optimization (PSO)!2, and Ant Colony Optimization (ACO)'3,
each known for specific advantages in terms of solution quality, convergence speed, and the balance between
exploration and exploitation'®. However, these algorithms often face limitations in adaptability and scalability
when dealing with the dynamic conditions of fog-cloud systems'>.

To address these challenges, study propose a novel algorithm, the DMCS algorithm, which innovatively
combines the strengths of PSO and ACO within a dynamic and adaptive framework tailored for the unique
demands of fog-cloud computing. The DMCS algorithm is designed to dynamically switch between different
optimization strategies based on continuous analysis of system states and task-specific characteristics. This
flexibility ensures that the scheduling mechanism remains optimal under varying operational conditions,
thereby enhancing the overall efficiency and responsiveness of IoT systems.

Further enhancing the DMCS algorithm is the integration of the Best Worst Method (BWM) for multi-
criteria decision-making'®. This method is employed to prioritize tasks based on a variety of critical factors,
including urgency, resource demand, and potential impact on system performance. By incorporating BWM,
the DMCS algorithm improves its decision-making capabilities, enabling more nuanced and strategic task
prioritization that aligns with the operational goals of fog-cloud computing.

The key contributions of this paper are:

« A novel DMCS algorithm is developed, integrating PSO and ACO to enhance task scheduling efficiency in
fog-cloud environments.

o A dynamic adaptation mechanism is introduced, which selects the most appropriate optimization strategy
based on real-time system analysis.

o A multi-criteria decision-making approach using BWM is implemented to prioritize tasks, considering fac-
tors such as computational complexity, urgency, and data size.

o The performance of the proposed DMCS algorithm is evaluated through extensive simulations, demon-
strating improvements in makespan, operational costs, and energy consumption compared to existing al-
gorithms.The remainder of this paper is organized as follows: “Related work” reviews related work in task
scheduling for fog and cloud computing, highlighting both their strengths and limitations. “Methodology”
covers the overall methodology of the study. “System model” describes the system model and presents the
mathematical formulation of the scheduling problem. “DMCS-based task scheduling” details the proposed
DMCS algorithm and its components. “Experimental setup and performance evaluation” covers experimen-
tal setup and performance evaluation of the he DMCS algorithm. “DMCS algorithm validation” covers the
DMCS algorithm performance validation on various benchmarking optimization test function. “Results and
discussion” discusses the experimental setup and simulation results. “Discussion and limitations” covers the
detailed discussion on the obtained results from the study and also covers limitations of the study. Finally,
“Conclusion and future directions” concludes the study and outlines future research directions.

Related work
Task scheduling in fog-cloud computing environmentsisa critical challenge due to the dynamic and heterogeneous
nature of IoT systems. Efficient scheduling algorithms are essential for optimizing resource utilization, reducing
latency, and improving overall system performance. In this section, we review existing scheduling approaches,
critically evaluating their strengths and limitations to identify gaps in the current literature.

Najafizadeh et al.'” proposed a Multi-Objective Simulated Annealing (MOSA) algorithm to securely assign
tasks to fog and cloud nodes, optimizing time and cost while controlling access levels and meeting task deadlines.
Their approach effectively balances multiple objectives using a Goal Programming Approach (GPA). However, it
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has limitations in scalability and flexibility when applied to larger, more complex networks, as the computational
overhead increases significantly with the number of tasks and nodes.

Movahedi et al.!® introduced an optimization framework focusing on time and energy consumption in fog
computing. They proposed an Opposing Chaotic Whale Optimization Algorithm (OppoCWOA) to address
task scheduling. While their method demonstrates effectiveness in reducing energy consumption and execution
time, it suffers from high computational complexity due to the chaotic mapping and opposition-based learning
mechanisms, which may limit its applicability in real-time systems where quick decision-making is crucial.

Yadav et al.!? developed a hybrid approach combining the Fireworks Algorithm with the Heterogeneous
Earliest Finish Time (HEFT) heuristic for task scheduling. Their bi-objective optimization aimed at minimizing
makespan and cost, showing superior performance in simulations. However, the approach may have limited
applicability to diverse IoT tasks due to its reliance on specific task characteristics and assumptions inherent in
the HEFT heuristic, which may not hold in more dynamic or heterogeneous environments.

Hosseinioun et al.?’ proposed an energy-aware scheduling approach using Dynamic Voltage and Frequency
Scaling (DVES) in fog computing. Their hybrid algorithm, combining Invasive Weed Optimization and Cultural
Algorithm (IWO-CA), effectively reduces energy consumption without violating task precedence constraints.
Nevertheless, the method is limited to specific processor types that support DVFS, restricting its generalizability
across different hardware platforms commonly found in heterogeneous fog environments.

Azizi et al*! focused on minimizing energy consumption and meeting QoS requirements by introducing
a priority-aware semi-greedy algorithm with a multi-start procedure. While their model improves deadline
adherence and energy efficiency, it is primarily designed for fog nodes and does not fully consider the integration
with cloud resources, limiting its applicability in integrated fog-cloud environments where tasks may need to be
offloaded to the cloud due to resource constraints.

Hussien?? presented an Artificial Ecosystem-based Optimization (AEO) method enhanced by Salp Swarm
Algorithm (SSA) operators for task scheduling in cloud-based IoT services. Their algorithm outperformed
others in terms of makespan time and throughput. However, the scalability of the approach remains a concern
for larger systems, as the complexity of the algorithm increases with the number of tasks, potentially leading to
longer scheduling times.

Ghafariand Mansouri?® addressed task scheduling challenges with an Enhanced African Vultures Optimization
Algorithm for Task Scheduling (E-AVOA-TS). Their framework showed effectiveness and robustness, but the
high computational cost associated with generating and evaluating a large number of candidate solutions could
be a limitation in real-time applications where swift scheduling decisions are necessary.

Ali et al.?* introduced the Multiobjective Harris Hawks Optimization-based Task Scheduling (MoHHOTS)
algorithm, optimizing delay and energy consumption with significant improvements. However, its application
scenarios are somewhat limited, as the algorithm may not perform optimally in highly dynamic environments
due to its convergence characteristics.

Rao and Qin® proposed the Enhanced Hybrid Equilibrium Optimizer (EHEO) for AloT task scheduling,
showing superior performance in reducing makespan and energy consumption. The high computational cost
of the algorithm, resulting from its complex equilibrium optimization process, may hinder its practicality in
resource-constrained environments typical of IoT edge devices.

Mousavi et al.?® developed a Directed Search operator in NSGA-II for IoT-based task scheduling, achieving
better deadline adherence and overall performance. Despite its effectiveness, the approach may be limited to
specific IoT devices and network configurations due to assumptions made in the model about the network
topology and task characteristics.

Agarwal et al.”’ proposed a Hybrid Genetic Algorithm for multiprocessor task scheduling, improving
efficiency. However, the high complexity of the algorithm and the possibility of premature convergence could be
drawbacks for large-scale systems with a high number of tasks and processors.

Saif et al.?® introduced a Multi-Objective Grey Wolf Optimizer (MGWO) algorithm to address cloud-
fog computing challenges, significantly reducing delay and energy consumption. While effective, the high
complexity of the algorithm and its sensitivity to parameter settings may limit its scalability and robustness in
varying operational conditions.

Iftikhar et al.? presented HunterPlus, an Al-based task scheduling approach focusing on energy efficiency
and job completion rate. Although promising, the method may result in high energy consumption in certain
scenarios due to the overhead associated with AI computations, and it may require significant computational
resources not always available in fog environments.

Recent advances in task scheduling

Task scheduling in fog-cloud computing environmentsisa critical challenge due to the dynamic and heterogeneous
nature of IoT systems. Efficient scheduling algorithms are essential for optimizing resource utilization, reducing
latency, and improving overall system performance. In this section, we review existing scheduling approaches,
critically evaluating their strengths and limitations to identify gaps in the current literature.

Ghobaei-Arani et al.*® provided a comprehensive review of resource management approaches in fog
computing, including task scheduling mechanisms that aim to minimize execution time and energy consumption.
While their findings highlight the effectiveness of deep reinforcement learning, they also note that the reliance
on such computationally heavy methods may not be feasible for resource-constrained fog nodes.

Liu et al.3! introduced an energy-efficient task allocation algorithm for mobile edge computing systems. Their
approach addresses the heterogeneity of resources and seeks to reduce energy consumption. However, static
parameter settings in their model can result in challenges in highly dynamic environments.

Sun et al.*? developed a multi-objective optimization approach for resource scheduling in fog computing
using an improved Non-dominated Sorting Genetic Algorithm II (NSGA-II). Their method successfully
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optimizes makespan and energy consumption. However, the complexity of NSGA-II may hinder scalability
when applied to large-scale systems, as the computational overhead increases.

Xia et al.?® surveyed federated learning approaches for task scheduling in edge-cloud systems. Their research
highlights the potential of using federated learning to enhance data privacy and reduce latency. Despite its
promise, the method involves significant communication overhead and synchronization, which may not be
practical in all fog-cloud environments, particularly those with unstable or limited network capacity.

Finally, Chen et al.** proposed a dynamic task offloading strategy for mobile edge computing with hybrid
energy supply. This method effectively reduces latency and energy consumption. However, similar to previous
approaches, it struggles with multi-objective optimization involving cost and resource utilization, particularly in
systems with high levels of heterogeneity.

The above review underscores that while significant advancements have been made in task scheduling for
fog-cloud environments, challenges related to computational complexity, scalability, and dynamic adaptability
remain.

Gaps and limitations in existing research
Despite the advancements made by these studies, several gaps remain unaddressed:

o Scalability: Many algorithms exhibit high computational complexity, making them less suitable for large-
scale or real-time systems where quick and efficient scheduling is critical.

o Flexibility and Generalizability: Several approaches are tailored to specific types of tasks, devices, or net-
work configurations, limiting their applicability across the diverse and heterogeneous environments typical
of IoT systems.

« Comprehensive Multi-Objective Optimization: Existing methods often focus on optimizing a limited set
of objectives, failing to adequately balance multiple conflicting criteria such as execution time, cost, energy
consumption, and quality of service (QoS).

« Dynamic Adaptation: There is a lack of algorithms capable of dynamically adapting to changing system
conditions and task requirements in real-time, which is essential in highly dynamic fog-cloud environments.

« Integration of Fog and Cloud Resources: Many studies focus predominantly on either fog or cloud resourc-
es, without effectively leveraging the synergistic potential of integrated fog-cloud architectures.

Contribution
To address these unaddressed areas, study propose an Enhanced DMCS algorithm that integrates the strengths
of PSO and ACO within a dynamic and adaptive framework. Our approach offers the following contributions:

« Improved Scalability: By employing efficient optimization strategies and reducing computational overhead,
the algorithm enhances scalability, making it suitable for large-scale and real-time applications.

« Flexibility and Generalizability: The DMCS algorithm is designed to be applicable to a wide range of IoT
tasks and devices, accommodating the heterogeneity of fog-cloud environments.

o Comprehensive Multi-Objective Optimization: Our approach effectively balances multiple objectives, in-
cluding execution time, cost, energy consumption, and QoS requirements, through a multi-criteria deci-
sion-making process.

« Dynamic Adaptation Mechanism: The algorithm incorporates dynamic adaptation to adjust optimization
strategies based on real-time system analysis and task characteristics, ensuring optimal performance under
varying conditions.

« Integrated Fog-Cloud Resource Utilization: We leverage both fog and cloud resources synergistically, opti-
mizing task allocation to maximize the benefits of the integrated architecture.By filling these gaps, the study
aims to contribute a robust, efficient, and adaptable scheduling solution that enhances the performance and
reliability of smart home IoT systems in fog-cloud computing environments.

Summary

The reviewed literature underscores the ongoing efforts to develop effective task scheduling algorithms for
fog-cloud computing. While significant progress has been made, challenges remain in achieving scalability,
flexibility, comprehensive multi-objective optimization, dynamic adaptation, and integrated resource utilization.
Our proposed DMCS algorithm addresses these challenges, offering a novel solution that advances the state-of-
the-art in task scheduling for fog-cloud IoT systems.

The table summarizing related papers (see Table 1) provides an overview of various scheduling algorithms
proposed in recent literature, highlighting their scheduling factors, approaches, and limitations. This detailed
comparison underscores the diversity of strategies employed to enhance task scheduling in fog-cloud computing
environments, demonstrating the strengths and limitations of each method.

Methodology
This section details the foundation of fog-cloud computing, task scheduling, and the proposed DMCS algorithm.

Smart home architecture

In the rapidly evolving landscape of IoT, smart home applications are proliferating, driven by advances in
connectivity and automation technologies. Smart homes integrate a multitude of IoT devices, such as sensors,
actuators, and advanced home management systems, enabling automated control over various home functions
like lighting, temperature, security, and entertainment. These devices collect vast amounts of data, which require
substantial storage and processing capabilities .
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References Scheduling factors Approach Advantages Limitations
Nalj7a fizadeh et Time, Cost, Access Levels, Multi-Objective Simulated Annealing (MOSA) Balances multiple objectives using GPA Lin"{it.efi scalability and
al. Deadlines flexibility

Movahedi et al.'®

Time, Energy Consumption

Opposing Chaotic Whale Optimization Algorithm
(OppoCWOA)

Reduces energy consumption and
execution time

High computational
complexity

Yadav et al.!®

Makespan, Cost, Throughput

Hybrid: Fireworks Algorithm and HEFT heuristic

Superior performance in simulations

Limited applicability to
diverse IoT tasks

Hosseinioun
etal??

Energy Consumption, Precedence
Constraints

Hybrid Evolutionary Algorithm: IWO and
Cultural Algorithm (IWO-CA)

Reduces energy without violating
constraints

Limited to specific
processor types

Azizi et al.?!

Energy Consumption, Deadline
Violation Time

Priority-Aware Semi-Greedy Algorithm with
Multi-Start

Improves deadline adherence and
efficiency

Limited to fog nodes

Artificial Ecosystem-based Optimization (AEO)

Outperforms others in makespan and

Scalability concerns for

Task Scheduling (MoHHOTS)

consumption

Y )
Hussien Makespan Time, Throughput enhanced by SSA throughput larger systems

Ghafari and Makespan, Cost, Energy Enhanced African Vultures Optimization . . . .
Mansouri? Consumption Algorithm for Task Scheduling (E-AVOA-TS) Effective and robust task scheduling High computational cost
Al et al2* Delay, Energy Consumption Multiobjective Harris Hawks Optimization-based | Improves delay and energy Limited application

scenarios

Rao and Qin*

Makespan, Energy Consumption

Enhanced Hybrid Equilibrium Optimizer (EHEO)

Reduces makespan and energy use

High computational cost

Mousavi et al.?®

Deadline Satisfaction, Energy
Consumption

Directed Search operator in NSGA-II

Better deadline adherence

Limited to specific [oT
devices

Agarwal et al.?’

Makespan, Energy Consumption

Hybrid Genetic Algorithm

Improved scheduling efficiency

High complexity, possible
premature convergence

Saif et al.?®

Delay, Energy Consumption

Multi-Objective Grey Wolf Optimizer (MGWO)

Reduces delay and energy consumption

High complexity, sensitive
to parameters

Iftikhar et al.?

Energy Efficiency, Job Completion
Rate

HunterPlus

Focuses on energy efficiency

High energy consumption

due to AI overhead

Table 1. Summary of related papers.

Traditionally, cloud computing has been employed to manage the storage and processing needs of IoT
devices, enabling end devices to offload heavy computations and data storage to cloud data centers 2. However,
as the number of devices increases and the distance to centralized cloud servers remains significant, challenges
such as high latency, limited bandwidth, and network congestion become more pronounced *. These challenges
can degrade performance and reliability, particularly in applications where real-time processing is crucial.

To address these issues, fog computing has been introduced as an intermediary layer that bridges the cloud
and end devices *. Fog computing architectures reduce delays and enhance performance by situating computing
resources closer to the source of data generation-the IoT devices themselves °. By decentralizing processing tasks
through fog nodes, fog computing facilitates quicker response times and more efficient data handling.

As depicted in Fig. 1, the smart home architecture consists of three layers: the IoT edge devices, the fog layer,
and the cloud layer. The IoT devices, such as thermostats, security cameras, and lighting systems, are connected
to nearby fog nodes via local networks (e.g., Wi-Fi, Zigbee). These fog nodes act as localized processing units,
handling immediate data processing tasks and serving as intermediaries between the edge devices and the cloud
servers ’.

The fog layer does not merely function as a proxy server but plays a crucial role in data preprocessing,
analysis, and decision-making for latency-sensitive applications. It aggregates data from multiple edge devices,
performs computations, and can execute control commands back to the devices in real-time. This reduces the
need to transmit all raw data to the cloud, thereby minimizing network bandwidth usage and latency *°.

The cloud layer remains pivotal for long-term data storage, intensive data analytics, and management of
applications that do not require immediate processing. Fog nodes communicate with cloud servers over the
internet to upload processed data, receive updates, and synchronize system-wide information *.

The interaction between the layers is illustrated in the sequence diagram in Fig. 2. This diagram demonstrates
the workflow within the system, highlighting the communication steps between the edge devices, fog nodes, and
cloud servers.

In the sequence diagram (Fig. 2), the operational flow is as follows:

1. Data Generation: Edge devices generate data based on user interactions or environmental conditions.
Data Transmission to Fog Nodes: The edge devices send data to the connected fog nodes through local
communication protocols.

3. Local Processing at Fog Nodes: Fog nodes process the data, perform real-time analytics, and may execute
immediate control actions by sending commands back to the edge devices.

4. Selective Data Transmission to Cloud: Processed or aggregated data that requires long-term storage or
further analysis is transmitted from fog nodes to the cloud servers.

5. Cloud Processing and Storage: The cloud layer performs intensive computations, data mining, and stores
data for historical analysis.

6. System Updates and Synchronization: The cloud can send updates, configurations, or learning models back
to the fog nodes, which may further disseminate necessary information to the edge devices.This hierar-
chical approach ensures that time-sensitive tasks are handled promptly by the fog layer, enhancing system
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Figure 1. Architecture of a smart home integrating IoT, fog, and cloud computing.
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Figure 2. Sequence diagram illustrating interaction steps in the smart home architecture.

responsiveness, while the cloud layer manages tasks that require substantial computational power or are less
time-critical ¥7.

The connection between the edge devices and fog nodes is facilitated through local area networks, enabling high-
speed communication with minimal latency. Fog nodes are equipped with sufficient computational resources to
handle local processing demands and are strategically placed to optimize coverage and performance within the
smart home environment 4.

By effectively delineating the roles and interactions of each layer, the architecture ensures efficient utilization
of resources, improved scalability, and enhanced user experience in smart home systems. The inclusion of the
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Smart Home

sequence diagram provides a clearer understanding of the operational dynamics, allowing readers to comprehend
how data flows and processing occurs within the system.

Task scheduling and resource management

Task scheduling within fog computing is crucial for aligning computational tasks with the appropriate resources
to ensure efficiency and meet real-time processing demands. A fog computing task scheduler is primarily tasked
with determining the optimal node for each task, ensuring that deadlines are met and service to users is seamless.
This involves a sophisticated decision-making process where the fog manager node intelligently determines the
best scheduling strategies, as illustrated in Fig. 3.

As depicted in Fig. 3, the task scheduling process in fog computing starts with an evaluator that assigns
priorities to tasks based on incoming requests from IoT sensors. Once priorities are established, the scheduler
selects an appropriate node-either fog or cloud-based on various parameters like computational power, network
latency, and resource availability. Unlike traditional systems where real-time priority tasks were maintained
in queues, modern fog computing environments enable dynamic scheduling directly on resource-efficient fog
nodes. This shift enhances responsiveness and optimizes resource utilization across the network.

A resource manager plays a pivotal role in this process by assisting the task scheduler in determining the
availability of resource-efficient nodes. This integration between task scheduling and resource management
ensures that tasks are not only assigned to the most appropriate nodes but are also balanced in a way that
maximizes the efficiency of the entire fog layer.

Task scheduling in fog computing is recognized as an NP-hard problem, a classification that underscores
its computational complexity and the difficulty of finding optimal solutions. To address this challenge, meta-
heuristic methods are employed. These methods are designed to find suboptimal but highly effective solutions
to NP-hard problems. Recent advancements in this field have popularized the use of various meta-heuristic
algorithms, which are favored for their simplicity and effectiveness. Notable among these are the ACO, Whale
Optimization Algorithm (WOA), PSO, and the more recent African Vulture Optimization Algorithm. Each of
these algorithms offers unique strengths in exploring and exploiting the search space, which is crucial for task
scheduling in heterogeneous and dynamic environments like fog computing.

Dynamic multi-criteria scheduling algorithm
The DMCS algorithm is a novel meta-heuristic algorithm inspired by the complex decision-making processes
found in natural systems. It is specifically designed to address the challenges of task scheduling and resource
management in fog computing environments, where multiple criteria such as latency, energy consumption,
and resource utilization must be simultaneously optimized. Based on the principles of multi-criteria decision-
making, the DMCS algorithm dynamically adjusts its strategy according to the current state of the network and
the specific requirements of each task.

The algorithm initiates with a classification phase where tasks are categorized based on their urgency and
resource demands. This categorization helps in applying differentiated strategies that are tailored to the specific
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Figure 3. Task scheduling process in fog computing.
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needs of each task type. Figure 4 illustrates the flow of operations in the DMCS algorithm, highlighting the
dynamic interaction between different system components.

The first step in the DMCS process involves evaluating the current state of the network and the resource
availability at each fog node, as shown in Fig. 4. Based on this evaluation, the algorithm assigns initial priorities
to tasks using a set of predefined rules that consider both the urgency of the tasks and the current load on the
network.

The task scheduler then dynamically selects the most suitable fog node for each task based on a multi-criteria
scoring system. This system weighs factors such as the proximity of the node to the data source, the computational
capacity of the node, and the current workload of the node. The objective is to minimize delays and balance the
load across the network, thereby optimizing the overall performance and responsiveness of the system.

As tasks are executed and the network conditions change, the DMCS algorithm continuously re-evaluates and
adjusts the task-node assignments. This dynamic re-scheduling capability is crucial for adapting to fluctuating
workloads and changing network conditions, ensuring that performance bottlenecks are avoided and resource
utilization is maximized.

In addition to task scheduling, the DMCS algorithm also incorporates a resource management component
that monitors the usage of resources across the fog nodes. This component ensures that no single node becomes
overburdened, which could lead to performance degradation. The resource manager works in conjunction with
the scheduler to dynamically allocate and reallocate resources as needed, based on real-time data about network
conditions and task performance.

The flexibility and adaptability of the DMCS algorithm make it particularly well-suited for environments
with highly variable demands and heterogeneous resources, such as fog computing networks supporting IoT
applications. By integrating advanced meta-heuristic techniques, the algorithm efficiently handles the complexity
of multi-criteria decision-making in real-time, providing a robust solution for dynamic task scheduling and
resource management in distributed computing environments.

Assess network state No

Classify tasks

|

Prioritize tasks

l

Select fog node

l

Execute tasks

Reassess conditions?

Update assignments

Figure 4. Flowchart illustrating the operational process of the DMCS algorithm in fog computing
environments.
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Particle swarm optimization (PSO)

PSO is an evolutionary computation technique developed by Kennedy and Eberhart in 1995, inspired by social
behaviors observed in flocks of birds and schools of fish. The algorithm is particularly well-suited for solving
continuous optimization problems and is characterized by its simplicity and effectiveness. PSO optimizes a
problem iteratively by improving candidate solutions concerning a given measure of quality, typically involving
minimizing or maximizing a cost function.

Each particle in the swarm represents a potential solution to the optimization problem. The particles adjust
their positions by following the best-performing particles in the swarm, leading to an optimal or near-optimal
solution over successive iterations.

The PSO algorithm operates on the principle of social interaction among particles, where each particle
adjusts its trajectory towards its own best known position and the global best position discovered by the swarm.
This behavior is inspired by the social dynamics observed in flocks of birds or schools of fish.

The specific steps of the PSO algorithm are detailed in Algorithm 1, highlighting the initialization, evaluation,
update, and termination phases of the algorithm.

1: Initialize a swarm of particles with random positions and velocities
2: while termination criteria not met do

3: for each particle in the swarm do

4: Evaluate the fitness of the particle

5: if fitness is better than the best fitness (pbest) then

6: Update pbest

7 end if

8: end for

9: Update the global best (gbest) from all pbests

10: for each particle in the swarm do

11: Calculate particle velocity using:

12: vi(t + 1) = wv;(t) + cyri(pbest; — x;(t)) + cara(gbest — x;(t))
13: Update particle position using:

15: end for

16: end while

17: return gbest

Algorithm 1. Particle Swarm Optimization

Each particle i in the swarm has a position vector x; and a velocity vector v;.
where:

w is the inertia weight that controls the impact of the previous velocity on the current velocity.

c1 and ¢z are cognitive and social factors, respectively.

r1 and r2 are random numbers between 0 and 1.

pbest; is the best position of particle i, and gbest is the best position found by any particle in the swarm.

Ant colony optimization (ACO)

ACO is another powerful and flexible probabilistic technique for solving computational problems that can be
reduced to finding good paths through graphs. This method is inspired by the behavior of ants searching for food
and how they communicate their findings via pheromone trails. ACO is highly effective for discrete optimization
problems such as the traveling salesman problem and network routing.

In ACO, a set of artificial ants constructs solutions by traversing a graph, guided by pheromone trails that are
updated based on the quality of the solutions found. Over time, the pheromone trails lead the ants to converge
on the optimal path.

The specific steps of the ACO algorithm are detailed in Algorithm 2, highlighting the initialization, solution
construction, pheromone update, and optional daemon actions.
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: Initialize pheromone trails and place ants at starting nodes
while termination criteria not met do
for each ant do
Construct a solution by moving to the next node based on:

7i;(8)* - 7]'6‘
pij(t) J—QUB
Zk Tik (1) - Mik
end for

Update pheromones on all paths used by ants:
Ti(t+ 1) = (1= p)75(t) + 32 A
Optionally perform global update or daemon actions to enhance the pheromone
trail
10: end while
11: return the best solution found

Algorithm 2. Ant Colony Optimization

In the ACO algorithm, the probability 7;; that an ant moves from node i to node j is given by

a B
Tij " Mij

= 5 (1)
Zk Tk 775@

5 =

where:

o Ty; is the pheromone concentration on the edge from i to j,

o 1ij is the heuristic value of the edge,

o « and 3 are parameters that control the influence of 7;; and 75, respectively.As shown in Eq. (1), the proba-
bility 7r;; is influenced by both the pheromone concentration and the heuristic value of the edge.

Integration of PSO and ACO in DMCS
The DMCS algorithm leverages the strengths of both PSO and ACO to address the challenges in fog computing
environments. The integration operates on a two-tiered approach:

1. Global Search with PSO: PSO is utilized for global exploration of the search space, quickly identifying
promising regions where optimal solutions are likely to be found.

2. Local Search with ACO: ACO is employed for local exploitation within the promising regions identified by
PSO, refining solutions to achieve optimal or near-optimal task scheduling. This hybrid approach effectively
balances exploration and exploitation, enhancing the algorithm’s ability to find high-quality solutions in
complex and dynamic environments.

The detailed procedure of this integration is outlined in Algorithm 3 and visualized through a flowchart in Fig. 5,
illustrating the step-by-step process and interactions between PSO and ACO components.
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Figure 5. Flowchart illustrating the DMCS algorithm.
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1: Initialize the environment and parameters

2: Deploy PSO for global search

3: Initialize particles with random positions and velocities
4: repeat

5: for each particle do

6: Evaluate the global fitness

7 Update personal best and global best

8: Adjust velocity and position of particles

9: end for

10: Deploy ACO for local search refinement

11: Place ants at identified promising regions by PSO

12: repeat
13: for each ant do
14: Construct paths based on pheromone strength
15: Update pheromone trails based on quality of solution
16: end for

17: until local termination condition is met
18: Provide feedback from ACO to PSO
19: until global termination condition is met

. return the best solution found

[\
[en)

Algorithm 3. DMCS Algorithm Integrating PSO and ACO

To ensure that the global and local searches inform each other, a feedback mechanism is implemented:

« Feedback from ACO to PSO: The best solutions found by ACO influence the global best (gbest) in PSO,
allowing PSO to direct the swarm towards these refined solutions in subsequent iterations.

« Solution Evaluation: After each iteration, the combined solutions from PSO and ACO are evaluated, and
the best-performing solutions are used to update the personal and global bests, influencing the subsequent
behavior of both algorithms.This hybrid approach leverages the strengths of both PSO and ACO, using PSO’s
capability for rapid global search and ACO’s proficiency in detailed local exploration and exploitation, to
optimize the task scheduling and resource allocation in fog computing environments dynamically. This inte-
gration effectively addresses the complexities associated with task scheduling by balancing exploration and
exploitation, thus enhancing the adaptability and efficiency of the scheduling process.

Dynamic framework for task scheduling
Algorithmic structure
In addressing the challenges of dynamic task scheduling within fog computing environments, this study
introduces a robust algorithmic framework that leverages the integrated strengths of PSO and ACO. The
algorithm operates through a continuous feedback loop where the global search capabilities of PSO and the local
optimization strengths of ACO are synergistically combined.

The operational flow includes:

1. Initialization: Setting up initial parameters for PSO and ACO, and initializing the population of particles
and ants.

2. Global Optimization: Using PSO to explore the search space and identify promising regions for task sched-
uling solutions.

3. Local Refinement: Applying ACO within the promising regions to fine-tune the task assignments and re-
source allocations.

4. Feedback Mechanism: Incorporating feedback from ACO to update PSO parameters and guide the swarm
towards better solutions.

5. Iteration: Repeating the global and local optimization steps until convergence criteria are met.This struc-
tured approach ensures that the algorithm remains adaptable and responsive to changes in task demands and
resource availability.

Adaptability and responsiveness

In the context of dynamic scheduling within fog computing environments, adaptability and responsiveness are
critical characteristics that ensure the effectiveness of task allocation and resource management strategies. The
DMCS algorithm enhances these capabilities through:
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o Dynamic Parameter Adjustment: Adjusting algorithm parameters like inertia weight in PSO and phero-
mone evaporation rate in ACO based on real-time feedback from the system.

«+ Feedback Loops: Implementing continuous feedback between PSO and ACO to refine search strategies and
improve solution quality over time.

« Proactive and Reactive Strategies: Combining proactive task allocation with reactive real-time adjustments
to respond effectively to changing network conditions and task requirements.By integrating these mecha-
nisms, DMCS ensures high levels of efficiency and effectiveness in dynamic and unpredictable fog computing
environments.

The DMCS algorithm employs a continuous feedback loop between the global optimization carried out by
PSO and the local search refinement by ACO (see Fig. 6). This feedback loop allows the system to learn and
adapt from previous iterations, effectively tuning the swarm and ant behaviors to better navigate the solution
space under current conditions. This not only enhances adaptability but also ensures that the system remains
responsive to real-time changes.

Enhanced mutation strategy for DMCS algorithm
The introduction of an Enhanced Mutation Strategy (EMS) in the DMCS algorithm marks a significant step
towards improving its optimization capability, particularly in complex multimodal landscapes. This strategy
aims to increase the diversity of solutions within the population and dynamically adjusts the mutation rate
based on the search’s progress, allowing the algorithm to explore new and potentially more promising areas of
the search space. This adaptability is crucial in complex optimization problems characterized by multiple local
minima that could trap conventional algorithms.

The core idea of the EMS involves dynamically adjusting the mutation rates to enhance exploration
capabilities without compromising the convergence speed. The mutation rate is modified according to a decay
function, which depends on both the current iteration and the diversity of the population.

Start

Initialize PSO Parameters Initialize ACO Parameters

Global Optimization by PSO Local Search Refinement by ACO

Feedback Loop: Performance Metrics —

Adjust PSO Parameters

)

Adjust ACO Parameters

Adjust Inerfia Weight w Adjust Pheromone [Evaporation Rate p

End

Figure 6. The continuous feedback loop between the PSO and ACO.
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Algorithm 4 presents the pseudocode of the enhanced mutation strategy adopted in the study for the DMCS
algorithm, and Algorithm 5 depicts how the mutation rate is dynamically adjusted against iterations.

Require: Population, MaxIter, MutationBaseRate

Ensure: Adapted Population
1: procedure ENHANCED MUTATION (Population, iter, MaxIter)
2: for each individual in Population do
3 if Random() < MutationRate(iter, MaxIter) then
4 Mutate individual based on MutationBaseRate
5: end if
6: end for

7: return Population

8: end procedure

Algorithm 4. Enhanced Mutation Strategy for DMCS

1: function MutationRate(iter, MaxIter)
2: return MutationBaseRate x (1 - iter/MaxIter)
3: end function

Algorithm 5. Mutation Rate Calculation

The mutation rate adjustment is given by the equation:

. . . it
MutationRate(iter) = MutationBaseRate X (1 e ) (2)
MaxIter

Start

Initialize population

Calculate mutation rate

Apply mutations

Update population

End

Figure 7. The enhanced mutation strategy process in the DMCS algorithm.
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This equation ensures that the mutation rate decreases as the number of iterations increases, promoting higher
exploration in the initial phases and more exploitation in the later stages, as shown in Eq. (2).

Empirical results from testing the DMCS algorithm with the EMS on benchmark functions such as the Sphere
and Ackley functions show marked improvements. The strategy facilitated a more extensive exploration of the
search space, leading to faster convergence towards the global optimum. However, functions like Rosenbrock
and Rastrigin, known for their rugged landscapes, showed that while the EMS helped in escaping local minima, it
also introduced stochastic noise, leading to fluctuations in the convergence trajectory. This behavior underscores
the need for a balanced approach in mutation strategy to effectively navigate complex landscapes.

Figure 7 presents a flowchart that illustrates the EMS process.

The effectiveness of the EMS could be further enhanced by incorporating adaptive mechanisms that
dynamically adjust the parameters based on feedback from the optimization process. Future research should
focus on refining this strategy, possibly through adaptive mechanisms that respond to the state of the search,
thereby optimizing the exploration-exploitation balance dynamically. Such advancements could broaden the
applicability of DMCS in solving a wider array of complex optimization problems in real-world applications.

System model

In this section, we present the system model for our Enhanced MCS algorithm in fog-cloud IoT systems. The
system model encompasses the task model, resource model, and the mathematical formulation of the scheduling
problem. This comprehensive model lays the foundation for the DMCS-based task scheduling approach
described in subsequent sections.

Task model
We consider a set of independent tasks 7' = {T%, T2, ..., T} generated by IoT devices in a smart home
environment. Each task T} is characterized by the following attributes:

o Len;: The length of task T in millions of instructions (MI).

o Mem;: The memory requirement of task 7; in megabytes (MB).

o DataSize;: The size of input data for task 75 in MB.

o Deadline;: The deadline for task T; to be completed.

« Priority,: The priority level of task 7}, determined using the BWM based on criteria such as urgency, compu-
tational demand, and data size.Tasks are heterogeneous in nature, varying in computational complexity and
time sensitivity. The task model captures these variations to enable effective scheduling decisions.

Resource model
The fog-cloud computing environment comprises a set of computing nodes M = Miog U Mcioud, where:

o Miog = {M1, Ma, ..., My, } represents the set of fog nodes.

o Miouwa = {Mme, M 42, ..., M., } represents the set of cloud nodes.

o m = mj + me is the total number of computing nodes, where m is the number of fog nodes and m.. is the
number of cloud nodes.Each computing node Mj is characterized by the following attributes:

o CPUj: The processing capacity of node M in MIPS (Million Instructions Per Second).

+ MemCap,: The total memory capacity of node M; in MB.

o BWj: The bandwidth of node M in Mbps.

o Cecpu,;: The cost per unit CPU usage on node M;.

o Cmem,j: The cost per unit memory usage on node M.

o Cbw,;: The cost per unit bandwidth usage on node Mj.

 «;: The energy consumption rate when node Mj is active.

o [3j: The energy consumption rate when node M is idle.

+ Delay,: The communication delay associated with node M;.Fog nodes are located closer to the IoT devices,
offering lower latency but limited computational resources. Cloud nodes provide higher computational power
but are associated with higher communication delays.

Mathematical formulation

The objective of the DMCS-based task scheduling problem is to optimally assign tasks to computing nodes
to minimize makespan, total cost, and energy consumption while satisfying the tasks’ deadlines and resource
constraints.

Decision variables
We define a binary allocation matrix @ of size n X m, where:

Qi = { 1, if task T; is assigned to node Mj, 3)

0, otherwise.

As shown in Eq. (3), the matrix () indicates the assignment of tasks to nodes.
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Constraints

1. Task Assignment Constraint: Each task must be assigned to exactly one computing node, as expressed in
Eq. (4):

ZQU:I, Vi=1,2,...,n. 4)
j=1

2. Resource Capacity Constraints: The total resource demand on each node must not exceed its capacity, as
defined in Eq. (5):

ZMemi X Qij < MemCap;, Vj=1,2,...,m. (5)

i=1

3. Deadline Constraints: The completion time of each task must not exceed its deadline, as specified in Eq. (6):

CT; < Deadline;, Vi=1,2,...,n. (6)

where CT; is the completion time of task 7.

Objective functions
We consider three objective functions:
1. Makespan Minimization
The objective is to minimize the makespan MK, as defined in Eq. (7):

MK = mjax (Z ExeT;; x QZJ> . (7)

=1

Additionally, the execution time ExeT;; of task T; on node M is calculated using Eq. (8):

Len;

EXGTij = CPU K
J

(8)

2. Total Cost Minimization
The total cost Ctot includes computational cost Ceomp, communication cost Ceomm, and deadline violation cost
C., as expressed in Eq. (9):

Ctot = Ccomp + Ccomm + C’v~ (9)

Computational Cost is defined by Eq. (10):

Ccomp = Z Z (Ccpu,j X EXQTZ']' + Cmem,j X Memz) X Q” (]())

i=1 j=1

Communication Cost is given by Eq. (11):

n

Ceomm = Z Z wayj x DataSize; x Q” (11)

i=1 j=1

Deadline Violation Cost is represented in Eq. (12):

CT; — Deadline;
—> . (12)

C, = Z Penalty; x max (O’ Deadline;

1=1

3. Total Energy Consumption Minimization
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The objective is to minimize the total energy consumption Eiot, as defined in Eq. (13):

Eiot = Z (ActiveTime; x aj + (MK — ActiveTime;) x §;), (13)

j=1

where ActiveTime; is calculated using Eq. (14):

n
ActiveTimej = ZEXGTU X Qz] (14)

i=1

Composite objective function
We combine the three objectives into a single composite fitness function, as shown in Eq. (15):

Fobj = A1 X MK + A2 X Egot + A3 X Chot, (15)

where A1, A2, A3 are weighting factors such that Ay + A2 + A3 = 1.

DMCS-based task scheduling

In this section, we elaborate on the DMCS-based task scheduling method, which leverages an integrated
approach using PSO and ACO to efficiently manage and allocate tasks in the fog-cloud environment. The DMCS
algorithm aims to minimize the composite objective function defined in the system model by assigning tasks to
the most appropriate computing nodes.

Overview of DMCS algorithm
The DMCS algorithm operates by iteratively improving a population of potential solutions (task assignments)
using PSO and ACO mechanisms. It incorporates the task priorities determined by the BWM to guide the search
towards optimal solutions.

To ensure effective scheduling, tasks are prioritized using the BWM. This method systematically evaluates
and ranks tasks based on multiple criteria such as urgency, resource demand, and potential impact on system

7 loT Devices

\
1

E- ) ~ ‘e, :

> £ - /]\ ‘. !
/ |

i

- \a ,I

| High Priority Fog Layer

I
" I
| [Tasks l—»[BestWorst Method (BWM)H Prioritized Tasks ] I
I
I

B o i i i s i i e, S | e £ s St Cloud
Node 2
| S i e o o o, 1
/)

Low Priority

Allocate tasks to

I

' [oMCs-based

| ks Sone |
| [Taks Scheduter (2 )] Makespan appropriate
I

|

; resources
e Energy Consumption e s Cloud
——————————————————————————— -l - Node n

Fog Node 1 Fog Node 2 Fog Node 3 == Fog Node n

Figure 8. Task scheduling process in fog computing.
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performance. By identifying high-priority and low-priority tasks, DMCS can allocate resources more effectively,
directing the most critical resources to the tasks that require them most urgently.

Architecture of DMCS for task scheduling

The architecture of the DMCS for task scheduling in fog-cloud environments is designed to optimize the
allocation and execution of tasks across distributed computing resources, as shown in Fig. 8. This section
provides a detailed overview of the architectural model, demonstrating how DMCS prioritizes and schedules
tasks efficiently through an integrated system of components and decision-making processes.

Task Manager: At the core of the DMCS architecture is the task manager, which serves as the initial point
of contact for all incoming tasks. It receives a list of tasks for execution, accepting each task and analyzing its
significant parameters such as count, characteristics, urgency, and resource requirements.

Smart Gateway: The smart gateway acts as an intermediary between end-devices and the network edge. It
assesses tasks forwarded by the task manager and calculates their priorities based on predefined criteria. These
criteria may include latency sensitivity, computational demand, and data security requirements.

Resource Manager and Task Scheduler: The resource manager and the task scheduler are pivotal in the DMCS
architecture. After receiving task information and resource details from the smart gateway, these components
work in tandem to allocate tasks to the most suitable nodes. The task scheduler, using information about node
status and resource capacity from the resource manager, strategically dispatches tasks to fog nodes or cloud
servers based on their evaluated priorities and the current load on each node.

To facilitate effective multi-criteria decision-making in task scheduling, DMCS incorporates the BWM, as
described in the “System model” section. This method helps in determining the optimal node (fog or cloud) for
each task based on multiple criteria, such as task size, deadline, computational intensity, and latency sensitivity.
BWM ranks these criteria to ensure that latency-sensitive tasks are primarily allocated to fog nodes, which
are closer to the end-users, while less time-critical tasks may be directed towards the cloud for cost-effective
processing.

o Task Submission: Tasks received at the smart gateway are classified into latency-sensitive and latency-tolerant
categories.

o Priority Calculation: Using BWM, tasks are prioritized. High-priority tasks, especially those requiring imme-
diate processing, are tagged for fog nodes.

o Resource Allocation: The resource manager evaluates the available capacities of fog and cloud resources. Based
on this evaluation, the task scheduler assigns tasks to appropriate nodes, ensuring that the system’s overall
load is balanced and performance criteria are met.

o Execution: Tasks are executed on their assigned nodes. Fog nodes handle real-time, critical tasks, maximizing
responsiveness and reducing latency. Cloud nodes manage heavy-duty tasks that require significant compu-
tational resources but are less time-sensitive.

o Result Management: Once tasks are processed, results are relayed back to the users through the smart gate-
way. This gateway also acts as a broker, managing the communication between fog and cloud nodes and the
end-users.Continuous feedback from the execution nodes (fog and cloud) to the task manager and resource
scheduler helps in dynamically adjusting task priorities and allocations based on real-time performance data.
This adaptive mechanism ensures that DMCS can respond effectively to changes in task demands or resource
availability, optimizing throughput and minimizing delays and costs.

Algorithm steps
1. Initialization:
« Compute the tasks’ weights using BWM based on criteria such as deadline, task size, and data size.
o Sort tasks in decreasing order of weight (priority).
« Generate an initial population of solutions (particles/ants), where each solution represents a possible as-
signment of tasks to nodes.
2. Tteration: For each iteration ¢t = 1 to MaxIter:
(a) Fitness Evaluation: For each solution in the population:
o Calculate the fitness value using the composite objective function Fop;.
(b) Update Best Solutions:
« Update the global best and local best solutions based on fitness values.

(c) Generate New Solutions:

+ Use PSO and ACO operators to generate new candidate solutions by exploring and exploiting the search
space.

(d) Selection:

o Select the best solutions to form the population for the next iteration.
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3. Termination:

« The algorithm terminates after reaching the maximum number of iterations or when the solutions con-
verge.

4. Output:

o Return the best-found solution representing the optimal task assignment.

Integration with system model

The DMCS algorithm utilizes the system model to evaluate the fitness of solutions and ensure that all constraints
are satisfied. By integrating the task and resource models, the algorithm can make informed decisions about
task assignments, balancing the load between fog and cloud nodes while optimizing for the defined objectives.

Representation of solutions
In the DMCS framework, each potential task scheduling solution is represented by a particle in PSO and an ant
path in ACO. These representations are visualized through an allocation matrix, as described in the “System
model” section. Each scheduling solution involves a multi-dimensional matrix of size n X m, where n is the
number of tasks and m is the number of nodes.

The allocation matrix for each solution has binary values (0 or 1) as shown in Fig. 9, where:

Given the dual nature of the fog-cloud environment, DMCS effectively balances task assignments between fog
and cloud nodes, ensuring that tasks are distributed optimally based on their priority and resource requirements.

Operational mechanisms
The DMCS algorithm employs both exploration and exploitation phases to efficiently search the solution space:

« In the exploration phase, new potential task-node mappings are explored to avoid local optima.

« The exploitation phase refines these mappings to optimize the fitness function.Adjustments and updates
to task mappings are made dynamically based on real-time performance metrics, ensuring that the system
adapts to changes in task demands and network conditions.

Task priority using BWM in DMCS

As detailed in the “System model” section, the BWM is strategically employed to prioritize tasks effectively. This

integration enhances the scheduling process by efficiently ranking tasks based on multiple relevant criteria.
Integrating BWM into the DMCS framework empowers the task scheduling process with a powerful tool

for making informed, efficient, and effective prioritization decisions. By methodically assessing tasks based

on systematically derived and weighted criteria, DMCS ensures that resources within fog-cloud computing

environments are utilized optimally, enhancing overall system performance and user satisfaction.

T, |1 |1 |- |1

Figure 9. Allocation matrices representing different solutions.
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Algorithm | Parameter Value
PSO Population size 100
Max iterations 1000
Inertia coefficient 0.9
Cognitive coefficient 2
Social coefficient 2
GA Population size 100
Max iterations 1000
Crossover rate 0.8
Mutation rate 0.05
ACO Number of ants 100
Max iterations 1000
Decay rate 0.6
Alpha 1
Beta 2
COA Number of nests 100
Max iterations 1000
Abandon probability (pa) | 0.25
DMCS Population size 100
Max iterations 1000
Initial mutation rate 0.1
Mutation decay Adaptive (decreasing)

Table 2. Parameter settings for algorithms.

Hardware features | Content

Processor Intel Core i5-1335U (up to 4.6 GHz with Intel Turbo Boost Technology, 12 MB L3 cache, 10 cores, 12 threads)

Memory 16 GB DDR4-3200 MHz RAM (2 x 8 GB)

Storage 1 TB PCle NVMe M.2 SSD

Operating System | Windows 11 Home

Software Microsoft Office Home & Student Edition 2021

Display 68.6 cm (27”) diagonal, FHD touch, IPS, three-sided micro-edge, glossy, Brightness: 300nits, Color Gamut: 72% NTSC, Resolution: 1920 x 1080
Graphics Intel UMA Graphics

System Type 64-bit operating system, x64-based processor

Software Edition Windows 11
Evaluation Tool MATLAB
Version R2024a

Table 3. The system configuration for the simulation environment.

Experimental setup and performance evaluation
Simulation environment
The simulation environment for evaluating the DMCS algorithm is established using MATLAB software. The
parameters for the DMCS algorithm and other comparative algorithms are set to ensure fair and consistent
comparisons across all experiments. The general settings include a population size of 100 and a maximum
of 1000 iterations per run (see Table 2). The performance of each algorithm is averaged over 30 independent
runs. Specific parameters for each optimizer are maintained as per their original configurations to maintain the
validity of the comparison.

The software and hardware configurations for the simulation environment are presented in Table 3.

Scenario design

The DMCS algorithm is tested across a variety of task scheduling scenarios in a simulated fog-cloud computing
environment. Each scenario is designed to test the algorithm under different loads and operational conditions
including variations in task size, complexity, and deadline requirements. Scenarios also vary the distribution of
tasks between fog and cloud layers to simulate real-world application conditions.

Metrics for performance evaluation
To assess the effectiveness of the DMCS algorithm, several metrics are considered:
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Figure 10. Illustration of performance metrics for DMCS algorithm.

o Makespan - The total time taken from the start of the first task to the completion of the last task.

+ Energy Consumption - Total energy consumed by the system during the task execution.

« Cost - Total operational cost including computation and communication costs.

o Deadline-Satisfied Tasks (DST%) - The percentage of tasks that meet their deadline requirements.These
metrics provide a comprehensive view of the performance and efficiency of the scheduling algorithm under
various conditions as shown in Fig. 10.

Figures and additional data are presented to illustrate the performance measures, showing average, standard
deviation, maximum, and minimum values of the fitness function for each experimental run.

The integration of these metrics and scenarios provides a robust framework for evaluating the performance
and adaptability of the DMCS algorithm in a dynamic and distributed computing environment.

This detailed setup ensures that the DMCS algorithm is thoroughly tested and validated under conditions
that mimic real-world operational scenarios in fog-cloud computing environments.

DMCS algorithm validation

The DMCS algorithm undergoes a rigorous validation process through a series of classical benchmark test
optimization functions, essential for assessing its efficiency across different aspects of computational optimization.
These functions are categorized into monomodal, multimodal, and composite types, each chosen to test
specific capabilities of the algorithm. Monomodal functions, which possess a single global optimum, assess the
algorithm’s ability to exploit the search space effectively, honing in on and refining solutions around the global
optimum. Multimodal functions, characterized by multiple local optima, evaluate the algorithm’s exploration
skills, testing its ability to navigate through complex solution spaces and avoid premature convergence to local
optima. Composite functions combine features of both, offering a comprehensive challenge that evaluates the
algorithm’s overall efficiency in diverse optimization scenarios.

The DMCS is rigorously tested using classical benchmark functions known for their robustness in evaluating
optimization algorithms. These functions simulate real-world scenarios where both the precision of the solution
and the computational efficiency are crucial. Performance metrics such as the best, worst, average, and standard
deviation of the results are calculated over multiple independent runs to ensure the reliability of the outcomes
against the algorithm’s stochastic nature.
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Comparative analysis is conducted where DMCS’s performance is juxtaposed with established optimization
techniques like Particle Swarm Optimization, Genetic Algorithms, and others. Detailed tables and graphical
representations document this analysis, highlighting how DMCS fares against these algorithms across various
test functions. Special emphasis is placed on scenarios where DMCS outperforms competitors, particularly in
managing complex and high-dimensional optimization challenges. These results underscore the robustness of
DMCS and its adaptability for effective task scheduling in environments like fog-cloud computing, where tasks
and resource demands are highly variable.

The pseudocode of the DMCS algorithm is also provided, detailing the procedures involved in the optimization
process. This includes the initialization phase, parameter settings, execution of the optimization cycles, and
the iterative updates of solutions based on evaluation criteria. The algorithm’s capability to dynamically adapt
to varying task demands and resource availabilities in a simulated environment is showcased, reinforcing its
practical utility and effectiveness.

In summary, the validation section meticulously demonstrates the technical efficacy of the DMCS algorithm,
establishing a solid basis for its deployment in sophisticated scheduling tasks and providing a reliable framework
for future enhancements in the dynamic field of computational optimization.

Test optimization benchmark functions

The DMCS algorithm has been rigorously tested using a suite of classical benchmark optimization functions that
are widely recognized for their robustness in testing various aspects of computational algorithms shown in Table
4. These functions are crucial for evaluating the algorithm’s efficiency in exploring and exploiting the search
space under various complexities and dimensions.

A comprehensive set of unimodal, multimodal, and fixed-dimension multimodal functions was employed to
assess the algorithm’s performance. The unimodal functions, which include benchmarks like Sphere, Rosenbrock,
and Rastrigin, are primarily used to test the exploitation capabilities of the algorithm, focusing on its ability to
hone in on the global optimum without being distracted by local optima. These functions have a single global
optimum, making them ideal for evaluating the precision and speed of convergence of the DMCS.

Multimodal functions, such as Ackley, Griewank, and Levy, present multiple local optima, challenging the
DMCS to demonstrate its exploration capabilities. These functions are crucial for testing the algorithm’s ability
to escape local optima and effectively search large and complex landscapes for the global optimum.

The fixed-dimension multimodal functions provide a controlled environment to further test the DMCS
under scenarios with a known number of variables and complexities. These functions are particularly useful
for benchmarking the algorithm’s performance in a constrained dimensionality, assessing both exploration and
exploitation strengths.

Table 4 provides an overview of the benchmark functions used, detailing their mathematical expressions,
search boundaries, and objectives:

The performance of the DMCS algorithm was rigorously evaluated using a variety of benchmark functions,
each with unique landscapes to challenge the algorithm’s exploitation and exploration capabilities. Figures 11
and 12 depict the contour and 3D visualizations of the functions, respectively, illustrating the complexity of the
landscapes the algorithm navigates during optimization. Figure 11 presenting 2D contour plot where optima can
be visualized in two dimensional space. Figure 12 depicts 3D surface plot of the benchmark test functions with
optima and objective function nature in the three dimensional search space.

These visualizations provide intuitive insights into the search space’s complexity, where each function presents
distinct challenges. For instance, the Rastrigin function features a large number of local minima, making it ideal
for testing the algorithm’s ability to avoid local optima traps. Similarly, the Levy function’s rugged landscape tests
the robustness of DMCS’s exploration strategies.

Each function was tested over multiple runs, with the DMCS algorithm configurations set to optimize for
the lowest values. Performance metrics such as average, best, worst, and standard deviation of the results were
calculated to provide a comprehensive view of the algorithm’s capabilities across these diverse functions. This

Function name | Formula Search bound | Optimum function value | Optima location
Sphere fl@)=3" 7 [-100,100] |0 0=(0,0,...,0)
Rosenbrock f(x) = 2?2_11[100(1'7;_‘_1 — xf)Q =+ (IEZ — 1)2] [-30,30] 0 1= (1, 1,..., 1)
Rastrigin f(z) =10n+ E?:l[m? — 10 cos(27z;)] [-5.12,512] |0 0=(0,0,...,0)
- _ 1 n 2
Ackley f(l‘) =-20 exp ( . n Zi:l x’) [-32,32] 0 0= (0, 0,..., O)
—exp (% > COS(Qﬂ'Ii)) +20+e
Griewank f(x) =1+ AL()IW Z?:l x? — H?=1 cos (%) [—600,600] 0 0= (0’ 0,..., 0)
F(@) = sin(mwn) + Y0 (wi — 1)? _
L i=1 -10,10 0 1=(1,1 1
o [14 10sin?(rw; + 1)] + (wn, — 1)?[1 + sin?(27wy,)) : : 41 1)

Table 4. Benchmark test optimization functions for DMCS validation.
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Figure 11. Contour plots of benchmark functions used in the evaluation of the DMCS algorithm. From top
left to bottom right: Sphere, Rosenbrock, Rastrigin, Ackley, Griewank, and Levy functions.
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Figure 12. 3D surface plots of the benchmark functions demonstrating the varied topographies, including
peaks, valleys, and plateaus.

rigorous testing ensures that the DMCS algorithm is not only theoretically sound but also practically effective
across a range of complex optimization scenarios.

Results and discussion

Convergence analysis

This section evaluates the performance of the DMCS algorithm, particularly focusing on its convergence
behavior across various classical benchmark functions. The enhanced mutation strategy implemented in DMCS
is examined through its impact on the convergence rates, depicted in the convergence plots (see Fig. 13).

The convergence analysis demonstrates that DMCS, while integrating an enhanced mutation strategy,
exhibits varied performance across different test functions. For instance, in the Sphere function, the DMCS
algorithm shows rapid convergence towards the global optimum, outperforming other algorithms such as PSO
and ACO in early iterations. This indicates a robust search capability in smoother landscapes, where the risk of
local minima is minimal®4°,
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Figure 13. Convergence plots illustrating the optimization progress of DMCS compared to other conventional
algorithms across different test functions. The DMCS algorithm shows varying levels of performance, with
notable improvements in simpler test functions and challenges in more complex scenarios.

In contrast, the Rosenbrock and Rastrigin functions, known for their deceptive and complex landscapes,
presented challenges. The DMCS algorithm initially lagged behind algorithms like GA and ACO but eventually
reached competitive fitness values towards the later stages of the iterations. This behavior underscores the strength
of the enhanced mutation strategy in escaping local optima and exploring the search space more thoroughly*!2.

Particularly notable is the performance on the Griewank and Levy functions, where DMCS demonstrated
significant improvements in convergence speed and stability. The algorithm effectively balanced exploration
and exploitation phases, as evidenced by its steady and consistent convergence curves. This is a testament to the
efficacy of the enhanced mutation strategy in managing the exploration-exploitation trade-off, which is critical
in multimodal and high-dimensional search spaces®.

However, the analysis also highlights some limitations. For example, in the Ackley function, where the
landscape features numerous local minima, the DMCS algorithm showed slower convergence relative to more
specialized algorithms like GA, which could navigate such complex terrains more effectively. This suggests that
while the enhanced mutation strategy improves diversity and search breadth, it may require further tuning to
optimize performance in highly rugged and multimodal landscapes.

Overall, the convergence plots (Fig. 10) illustrate that the DMCS algorithm, equipped with the enhanced
mutation strategy, offers a competitive and reliable option for tackling a broad range of optimization problems.
The results encourage further refinements and adaptations of the mutation parameters based on the problem’s
specific characteristics to optimize both convergence rates and solution accuracy.

In summary, the DMCS algorithm represents a promising approach in the field of evolutionary computation,
with its enhanced mutation strategy proving to be particularly beneficial in diverse and challenging benchmark
scenarios. Future work will focus on adaptive mechanisms to further refine this strategy, aiming to achieve
optimal performance across all types of benchmark functions.

DCMS algorithm response analysis

The DMCS algorithm’s response analysis through trajectories in the first dimension provides a comprehensive
insight into its behavior under various test conditions. As illustrated in Fig. 14, the trajectory plots for
functions like Sphere, Rosenbrock, Rastrigin, Ackley, Griewank, and Levy demonstrate distinct patterns of
agents’ movements across iterations. These plots serve as a qualitative metric for understanding the algorithm’s
exploration and exploitation dynamics in both unimodal and multimodal function landscapes*!.

The trajectory analysis of the Sphere function reveals rapid convergence towards optimal regions, indicating
efficient exploitation capabilities of DMCS. Conversely, in the Rastrigin function, the trajectories spread out
across the search space, reflecting the algorithm’s ability to explore extensively, crucial for avoiding local minima
in complex multimodal landscapes.
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Figure 14. Trajectory analysis of DMCS algorithm showing agent movements in the first dimension across
different test functions.

The Rosenbrock and Ackley function trajectories, however, exhibit periodic and somewhat erratic
movements, suggesting challenges in navigating the functions’ deceptive gradients and flat regions. This behavior
underscores the algorithm’s responsiveness to the function’s topological challenges, adapting its search strategy
between exploration and exploitation as needed.

Moreover, the trajectory plots for the Griewank and Levy functions highlight the algorithm’s sustained
exploration efforts, with occasional convergence spikes indicating successful local optima identification followed
by diversification. This pattern is crucial for problems where the search space contains numerous local optima,
and premature convergence could lead to suboptimal solutions*.

In conclusion, the DMCS algorithm demonstrates a balanced approach to handling diverse function
landscapes, adapting its mutation and crossover strategies dynamically to optimize both exploration and
exploitation. Future iterations of this algorithm could focus on enhancing adaptive mechanisms to further refine
this balance, potentially incorporating machine learning techniques to predict and react to the complexities of
the search landscape dynamically. This ongoing adaptation is expected to improve the robustness and efficiency
of the DMCS algorithm, making it a strong candidate for solving complex optimization problems across various
real-world applications.

Comparison of standard DMCS and enhanced mutated DMCS

The evaluation of the DMCS algorithm and its enhanced version employing a mutation strategy (Enhanced
Mutated DMCS) showcases distinct performance traits across various benchmark functions. This comparative
analysis, illustrated through convergence plots (see Figures 15 and 16), highlights the efficacy and adaptability of
the mutation strategy in handling complex optimization landscapes.

The DMCS algorithm, depicted in Fig. 15, demonstrates consistent performance across functions like
Sphere and Ackley, where it swiftly converges to the global optimum. This rapid convergence indicates a
strong exploitation capability within relatively simple landscapes. However, for more complex functions like
Rosenbrock and Rastrigin, DMCS shows delayed convergence, suggesting challenges in navigating rugged
multimodal terrains**°.

In contrast, the Enhanced Mutated DMCS, shown in Fig. 16, reveals an improved trajectory in these
complex functions. The mutation strategy introduces variability in the population, thereby preventing
premature convergence and encouraging thorough exploration of the search space. This is particularly evident
in the Rosenbrock and Rastrigin functions, where Enhanced Mutated DMCS not only converges faster but also
maintains a stable trajectory towards the optimum?*64’.

These observations are substantiated by the trajectory plots from various functions (see Fig. 17), where the
first dimension’s movement across iterations is plotted for both versions of the algorithm. The trajectory plots
for Enhanced Mutated DMCS display more dynamic and varied paths in the early iterations, which gradually
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Figure 16. Convergence plots for the Enhanced Mutated DMCS algorithm across various benchmark

functions.
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Figure 17. Trajectory plots showing the position in the first dimension across iterations for both the standard
and Enhanced Mutated DMCS algorithms.
Experiment no. | Characteristics Tasks Fog nodes | Cloud nodes | Iterations
1 Varying number of tasks | 100-200 | 20 10 50
2 Varying number of tasks | 300-500 | [10 30] 15 100
3 Fixed number of tasks 300 25 [520] 150
4 Fixed number of tasks 450 45 10 200
5 Fixed number of tasks 700 40 15 250
Table 5. Summary of experiment configurations detailing the variation in the number of tasks, fog nodes,
cloud nodes, iterations, and population sizes across different test scenarios.
Parameter | Values
Size 100-5000 MI
Deadline | 100-1000 ms
Table 6. Characteristics of tasks used in experiments, showing the range of task sizes and deadlines.
stabilize as the algorithm converges. This behavior underscores the mutation strategy’s role in enhancing
exploratory actions without compromising the convergence speed”*.

The convergence curves for the Sphere and Levy functions further exemplify the robustness of the Enhanced
Mutated DMCS. Unlike the standard DMCS, the enhanced version achieves lower fitness values quicker and
with fewer fluctuations, indicating an effective balance between exploration and exploitation®-!.

In conclusion, the introduction of an enhanced mutation strategy in DMCS significantly boosts its
performance, especially in dealing with complex and deceptive landscapes. Future studies should focus
on refining these strategies to optimize their effectiveness across a broader range of functions, potentially
incorporating adaptive mutation rates based on real-time feedback from the search process.

DMCS validation for task scheduling

The DMCS method is assessed to evaluate its efficacy in managing task scheduling within a computational

environment consisting of fog and cloud nodes. This approach is contrasted against four established algorithms:

PSO, Genetic Algorithm (GA), ACO, and Cuckoo Optimization Algorithm (COA). The performance of DMCS
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Parameter | Value of fog node | Value of cloud node
Capacity 1000-10,000 MIPS | 1000-10,000 MIPS

Cost Random Random
Delay 0-5ms 0-5ms
Power 0-100 W 0-100 W

Table 7. Specifications of fog and cloud nodes including capacity, cost, delay, and power consumption,
reflecting the operational parameters for task scheduling.

Algorithm | Makespan (s) | Total cost (units) | Energy consumption (J) | DST%
PSO 1200 7.2137 1.2381 x 108 100
GA 1150 6.0504 1.4817 x 108 100
ACO 1120 6.3580 77571 % 107 100
COA 1050 4.9561 1.2774 x 108 100
DMCS 1100 5.1229 7.0850 x 107 100

Table 8. Performance metrics for 700 tasks across different scheduling algorithms. Significant values are given
in bold.

is evaluated based on key metrics such as makespan, total cost, energy consumption, and the percentage of tasks
meeting their deadlines.

DMCS involves scheduling a diverse set of tasks across a network of fog and cloud nodes, adjusting for a
variety of experimental conditions. Each experiment varies in terms of the number of tasks, iterations, and
population size, guided by the specifics of the algorithm’s requirements. These experiments are meticulously
recorded in Tables 5, 6, and 7 , which detail the task and node characteristics, providing a comprehensive
overview of the experimental setups.

The network’s bandwidth and latency significantly influence the scheduling outcomes. It is assumed that
all fog nodes operate at a uniform bandwidth level, allowing for consistent data transmission speeds across the
network. Enhancements in network bandwidth are shown to reduce transmission delays, thereby improving
the overall efficiency of task scheduling. For instance, increasing the bandwidth from 10,000 to 20,000 Kbps
markedly reduces the delay, facilitating faster data migration to cloud-based data centers, which optimizes
network utilization.

Incorporating advanced communication technologies allows for effective offloading of tasks to proximal
systems equipped with appropriate middleware. This is particularly beneficial in environments characterized by
high-speed internet standards such as IEEE 802.11ac, and emerging mobile broadband technologies like LTE
and future 5G networks, which promise significantly enhanced data rates.

The series of experiments conducted are designed to explore the impact of varying numbers of tasks, the
capacity of fog and cloud nodes, and different scheduling algorithms under controlled settings. For example:—
The number of tasks tested ranges from 100 to 700, adjusting the number of fog and cloud nodes accordingly to
measure the impact on scheduling performance.—Specific experiments focus on the influence of fog and cloud
node variability, iterations ranging from 50 to 250, and a population size scaling from 50 to 150.

The experimental configurations are summarized in the tables below, providing clarity on the parameters
used in the study:

This examination provides valuable insights into the adaptability and robustness of the DMCS approach,
demonstrating its potential to enhance task scheduling performance across a variety of network configurations
and operational conditions in a fog-cloud computing environment.

Impact of number of tasks

In evaluating the effectiveness of the DMCS method, we compare the DMCS algorithm with other well-established
algorithms such as PSO, GA, ACO, and COA. The comparisons are based on several key performance metrics,
including makespan, total cost, energy consumption, and the percentage of deadlines met by the tasks (DST%).

The analysis involves conducting experiments with varying numbers of tasks to observe how the increase in
tasks affects the system’s performance. These experiments are systematically set with different numbers of tasks
ranging from 100 to 700, under fixed conditions of fog and cloud nodes, as detailed in Table 8. The results of
these experiments are crucial as they help in understanding the scalability and efficiency of the DMCS when
compared to conventional methods.

With the increase in the number of tasks, the load on the system naturally increases, which, in turn, affects
various performance metrics. It is observed that as the number of tasks increases, there is a significant impact on
the system’s makespan, cost, and energy consumption, all of which tend to increase. The makespan, representing
the total time taken to execute all tasks, is a critical factor since its minimization is crucial for enhancing the
system’s efficiency and reducing energy consumption.
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Figure 18. Performance comparison of DMCS with PSO, GA, ACO, and COA across varying numbers of
tasks, showcasing metrics of makespan, cost, energy consumption, and DST%.

A comparative analysis shown in Fig. 18 illustrates the performance of DMCS against other algorithms. From
the figure, it is evident that while DMCS maintains competitive performance across varying numbers of tasks,
the COA method yields lower makespan and total cost values compared to DMCS in most cases.

The observation that COA achieves lower makespan and total cost values compared to DMCS in most cases
is significant and warrants a detailed analysis. COAs performance can be attributed to its strong exploitation
capabilities, which enable it to converge quickly towards optimal solutions in terms of makespan and cost. The
Lévy flight mechanism in COA allows for efficient exploration of the search space, potentially leading to better
task assignments that minimize execution time and operational costs.

However, it is important to consider other critical performance metrics, such as energy consumption and
DST%, to fully assess the efficiency of a scheduling algorithm in fog-cloud environments. In our experiments,
DMCS consistently achieves lower energy consumption compared to COA, as shown in Table 8. Additionally,
both DMCS and COA maintain a 100% deadline satisfaction rate.

The differences in performance highlight the trade-offs inherent in multi-objective optimization:

« Makespan and Total Cost: COA excels in minimizing makespan and total cost due to its aggressive search
strategy. This is beneficial in scenarios where rapid task completion and cost reduction are the primary ob-
jectives.

 Energy Consumption: DMCS outperforms COA in terms of energy efficiency. By incorporating energy con-
sumption into its optimization criteria, DMCS effectively balances the load across nodes to reduce overall
energy usage.

 Deadline Satisfaction (DST%): Both algorithms maintain a 100% DST%, indicating their effectiveness in
meeting task deadlines.While COA achieves lower makespan and cost, DMCS offers several advantages:

1. Balanced Optimization: DMCS is designed to optimize multiple objectives simultaneously, providing a
more balanced solution that considers makespan, cost, energy consumption, and deadline adherence.

2. Energy Efficiency: In environments where energy consumption is a critical concern-such as in fog comput-
ing with limited energy resources-DMCS’s ability to minimize energy usage is a significant advantage.

3. Scalability: DMCS demonstrates robust performance as the number of tasks increases, maintaining lower
energy consumption without a significant increase in makespan or cost.

4. Adaptability: The multi-criteria nature of DMCS allows it to adapt to different priorities based on the specif-
ic requirements of the system or application.In practical applications, the choice between COA and DMCS
may depend on the specific priorities and constraints of the deployment environment:
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« When to Prefer COA: If the primary objectives are to minimize makespan and total cost, and energy con-
sumption is less of a concern, COA may be the preferred choice.

« When to Prefer DMCS: If energy efficiency is critical-due to environmental concerns or operational con-
straints-and a balanced optimization across multiple metrics is desired, DMCS offers a more suitable solu-
tion.The in-depth analysis reveals that while COA demonstrates strong performance in minimizing makespan
and cost, DMCS provides a more holistic optimization that includes energy efficiency. The efficiency of DMCS
over other methods is validated when considering a broader range of performance metrics, particularly in
scenarios where energy consumption is a key concern.

To further validate the efficiency of DMCS, we conducted additional experiments focusing on energy
consumption and scalability. The results reinforce the advantages of DMCS in managing energy usage while
maintaining competitive makespan and cost values.

As shown in Fig. 19, DMCS consistently consumes less energy compared to COA as the number of tasks
increases. This demonstrates DMCS’s ability to scale efficiently in larger task environments.

Impact of number of fog nodes

The scalability and adaptability of the DMCS approach are further tested by varying the number of fog nodes
involved in task processing. This segment of the study evaluates the DMCS against traditional optimization
algorithmsincluding PSO, GA, ACO, and Cuckoo Optimization Algorithm (COA), under different configurations
of fog nodes ranging from 10 to 50.

The results, as depicted in Fig. 20, illustrate the response of each algorithm to changes in the number of fog
nodes in terms of makespan, total cost, energy consumption, and the percentage of deadlines met (DST%).
Notably, the experiments demonstrate that an increase in the number of fog nodes generally improves the
performance metrics across all algorithms due to the enhanced parallel processing capabilities. However, the
efficiency of resource utilization, as reflected in the energy consumption and cost metrics, varies significantly
among the algorithms.

Table 9 shows detailed results for the scenario with 50 fog nodes. It is observed that while DMCS tends to have
higher cost and energy metrics at higher node counts, it maintains optimal DST%, indicating its effectiveness in
deadline adherence without significant performance trade-offs. This suggests that DMCS is particularly effective
in environments with dense fog node deployments, optimizing task allocation in a way that balances the load
and maintains high service quality.

These findings confirm that the DMCS algorithm not only adapts well to different network topologies but also
scales effectively with the increase in computing resources, making it a robust choice for diverse and dynamic
fog computing environments.
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Figure 19. Energy consumption comparison across varying numbers of tasks.
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Figure 20. Performance comparison of DMCS with PSO, GA, ACO, and COA as the number of fog nodes
varies, showing metrics of makespan, cost, energy consumption, and DST%.

Algorithm | Cost | Energy consumption | DST%
PSO 6.5681 | 5.3632 x 107 100
GA 7011 | 4.4324 x 107 | 100
ACO 7.2027 | 1.6221 x 107 100
COA 6.9725 | 4.7527 x 107 100
DMCS 8.122 [2.1914 x 107 100

Table 9. Cost and energy consumption performance comparison for 50 fog nodes across different scheduling
algorithms.

Impact of number of cloud nodes

The evaluation of the DMCS continues with an investigation into the effects of altering the number of cloud
nodes. This part of the analysis compares DMCS with established optimization algorithms-PSO, GA, ACO,
and Cuckoo Optimization Algorithm (COA). The experiment varies the number of cloud nodes from 5 to
25 to assess their influence on key performance metrics: makespan, total cost, energy consumption, and the
percentage of deadlines met (DST%).

The results showcased in Fig. 21 demonstrate how the number of cloud nodes impacts the performance of
scheduling algorithms. An increase in cloud nodes typically enhances computational capacity, which can reduce
makespan and improve the ability to meet deadlines, albeit potentially at a higher energy and cost overhead due
to increased resource availability.

Specific outcomes for a setup with 25 cloud nodes are detailed in Table 10. The DMCS algorithm, while
competitive, exhibits a balanced performance across cost and energy metrics compared to the other algorithms.
It manages to maintain a 100% deadline satisfaction rate (DST%), underscoring its effectiveness in ensuring
timely task completion.

These results affirm that DMCS is adept at handling varying cloud node densities, efficiently distributing
tasks to optimize resource utilization and operational costs, which is crucial for maintaining service quality in
scalable cloud computing environments.
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Figure 21. Comparative analysis of scheduling performance with varying numbers of cloud nodes,
highlighting differences in makespan, cost, energy consumption, and DST% across different algorithms.

Algorithm | Cost | Energy consumption | DST%
PSO 6.2545 | 9.4346 x 10° 100
GA 54791 | 1.5563 x 107 100
ACO 6.7423 | 2.95 x 107 100
COA 5466 | 1.5776 x 107 100
DMCS 6.2526 | 3.996 x 107 100

Table 10. Performance metrics for 25 cloud nodes across different algorithms, highlighting the cost-
effectiveness and energy efficiency of DMCS compared to traditional methods.

Impact of number of iterations

The DMCS algorithm’s robustness is further evaluated by varying the number of iterations in the optimization
process. This analysis involves comparing DMCS against well-known optimization algorithms such as PSO, GA,
ACO, and Cuckoo Optimization Algorithm (COA). The performance metrics considered include makespan,
total cost, energy consumption, and deadline satisfaction percentage (DST%).

Figure 22 illustrates the performance variations as the number of iterations increases from 50 to 250. These
variations offer insights into the efficiency and effectiveness of the DMCS in adapting to complex task scheduling
environments, particularly in comparison to traditional algorithms.

Cost and Energy Efficiency At 250 iterations, the comparison of total cost and energy consumption highlights
how the algorithms scale with increased computational effort. Table 11 shows the performance metrics for 250
iterations. Notably, DMCS demonstrates a competitive balance between cost efficiency and energy consumption,
maintaining high DST% across all iterations, which underscores its capability to handle intensive computational
tasks without substantial overheads.

Deadline Satisfaction Maintaining a 100% deadline satisfaction rate (DST%) across all tested algorithms
signifies the efficiency of these algorithms under varied iterative stresses. DMCS, in particular, showcases its
robust scheduling capability, ensuring that all tasks meet their deadlines irrespective of the increased number
of iterations.
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Figure 22. Impact of varying the number of iterations on the scheduling performance across different
algorithms. The comparison highlights differences in makespan, cost, energy consumption, and DST%.

Algorithm PSO GA ACO COA DMCS

Cost 5.7187 6.2539 5.7867 6.7339 6.5571

Energy Consumption |7.1321 x 10° [2.1588 x 107 | 2.9186 x 107 | 5.3654 x 107 | 3.9827 x 107
DST% 100 100 100 100 100

Table 11. Cost and energy consumption performance for 250 iterations across different algorithms,

demonstrating DMCS’s balanced approach to resource management and scheduling efficiency.

Discussion and limitations

This study introduced the DMCS algorithm aimed at enhancing the efficiency of task scheduling in fog-cloud
computing environments. DMCS addresses crucial objectives such as minimizing makespan, reducing cost, and
optimizing energy consumption through effective resource management strategies. By leveraging multi-criteria
decision-making, DMCS allocates resources dynamically based on task requirements, ensuring improved user
satisfaction and system performance.
Reduction in Computational Overhead
A significant advantage of DMCS is its ability to reduce computational overhead compared to traditional
scheduling algorithms. DMCS achieves this through:

Efficient Optimization Techniques: By integrating PSO and ACO algorithms with a multi-criteria deci-
sion-making process, DMCS efficiently searches the solution space without exhaustive enumeration of all

possible task-node assignments.

Dynamic Task Prioritization: DMCS dynamically adjusts task priorities based on real-time system metrics,
reducing unnecessary computations for lower-priority tasks during peak loads.
Scalable Architecture: The algorithm’s modular design allows for parallel processing of tasks, distributing the
computational load across multiple nodes and preventing bottlenecks.These mechanisms collectively contrib-
ute to lower computational overhead, enabling DMCS to perform effectively even as the number of tasks and

nodes increases.

Scalability in Larger Networks
DMCS is designed to scale efficiently with network size. Its scalability is attributed to:
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« Adaptive Resource Allocation: The algorithm adjusts resource allocation strategies based on the current
network state, ensuring optimal utilization of available resources.

« Distributed Processing: By leveraging the distributed nature of fog and cloud resources, DMCS can handle
larger workloads without significant degradation in performance.

« Linear Growth in Computation Time: Experimental results indicate that the computation time of DMCS
grows linearly with the number of tasks and nodes, which is more favorable than the exponential growth
observed in some traditional algorithms.Experimental Validation

To substantiate our claims, we conducted additional experiments with larger network configurations. Specifically,
we increased the number of tasks up to 1000 and the number of nodes up to 100 (including both fog and cloud
nodes). The results, presented in Table 12, demonstrate that DMCS maintains superior performance in terms of
makespan, cost, and energy consumption compared to other algorithms.

These results indicate that DMCS not only performs better in terms of key performance metrics but also
scales efficiently with increased network size.

Trade-offs and Optimization Challenges

The inherent trade-offs between makespan, cost, and energy consumption are critical in fog computing.
DMCS balances these objectives by:

o Utilizing a weighted multi-objective function to evaluate potential scheduling decisions.

« Dynamically adjusting weights based on system conditions to prioritize different objectives as needed.While
this approach reduces computational overhead and improves scalability, it introduces complexity in deter-
mining optimal weights and may require fine-tuning for different environments.

Algorithmic Limitations and Future Directions
Despite its advantages, DMCS faces limitations that necessitate further research:

+ Parameter Sensitivity: The performance of DMCS can be sensitive to parameter settings in the optimization
algorithms.

o Real-time Adaptation: In extremely dynamic environments, the algorithm may require enhancements to
adapt more rapidly to sudden changes.Future work will focus on:

 Implementing adaptive parameter tuning mechanisms.
o Incorporating machine learning techniques to predict system states and adjust scheduling strategies proac-
tively. Handling Complex Task Interdependencies

The current implementation of DMCS treats tasks as independent entities, which simplifies the scheduling
process but may not reflect real-world scenarios where tasks have dependencies. Incorporating task dependencies
into the scheduling model is a priority for future research.

Adaptation to Diverse Computing Environments

DMCS is designed to be adaptable to various hardware configurations. Future developments will enhance
its ability to:

« Recognize and exploit specialized hardware capabilities, such as GPUs and TPUs.
o Integrate with heterogeneous computing environments seamlessly.Privacy and Security in Fog Computing

Ensuring privacy and security is paramount. Future work will explore:

« Integrating secure computation techniques.
« Employing blockchain technologies for secure task scheduling and data integrity.Scalability and Real-time
Performance

To further enhance scalability and real-time performance, we plan to:

« Implement DMCS in containerized environments using Kubernetes and Docker.
« Leverage microservices architecture for modularity and scalability.

Algorithm | Makespan (s) | Total cost (units) | Energy consumption (J)
PSO 2100 12,5 2.2 x 108

GA 2000 118 2.0 x 108

ACO 1950 115 1.95 x 108

COA 1900 112 1.9 x 10%

DMCS 1800 105 1.8 x 108

Table 12. Performance comparison in larger networks (1000 tasks, 100 nodes). Significant values are given in
bold.
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Conclusion and future directions
The rapid expansion of IoT has increased the demand for efficient task scheduling in fog-cloud computing
environments. This research introduced the DMCS algorithm, which demonstrates significant improvements in
makespan, cost, energy consumption, and scalability.

Achievements of DMCS

DMCS effectively reduces computational overhead by:

« Streamlining optimization processes through combined heuristic methods.
« Dynamically adjusting to network conditions and task requirements.The algorithm’s scalability has been vali-
dated through experiments with larger networks, confirming its suitability for real-world applications.

Limitations and Justification
While DMCS shows promising results, it requires further development to:

« Enhance adaptability in highly dynamic environments.

« Incorporate complex task dependencies.The justification for our claims is supported by both theoretical anal-
ysis and experimental data, demonstrating DMCS’s ability to reduce computational overhead and scale effi-
ciently.

Future Directions
Future work will focus on:

o Integrating advanced machine learning techniques for predictive scheduling.

« Enhancing security and privacy features.

« Extending the algorithm to support more complex task models and dependencies.By addressing these areas,
DMCS aims to provide a robust, scalable, and efficient scheduling solution for the evolving demands of IoT
ecosystems.
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