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Abstract

Despite extensive empirical evidence of the economic and financial benefits of green buildings, the

adoption of energy retrofit investments in existing buildings has been limited. The global push to

increase the efficiency of the building sector, including city-level policies requiring energy use disclo-

sure and mandatory energy audits, continues to face barriers caused by information asymmetries,

insufficient pricing signals, principal-agent challenges, and uncertainty in the risk and return of en-

ergy retrofit investments. This paper develops a substantial, large-scale database of building energy

use, energy audit reports, land use, and financial characteristics in New York City to empirically

model the hurdle rate for energy retrofit investments, using actual audit data and permitted reno-

vation work. By modeling the estimated rate of return for energy retrofit investments for different

property types and building characteristics, we generate a more comprehensive understanding of

the perceived risk of these investments and the market and regulatory mechanisms that can over-

come financial and informational barriers to the adoption of energy conservation measures (ECMs).

Median internal rate of return (IRR) for adopted ECMs is found to be 20% for Multifamily and

24% for Office, which is consistent with the estimated return of a bundle of NPV-postive ECMs.

Adoption rates are higher for Office buildings than Multifamily, and in both cases adopter buildings

tend to be larger, higher value, and less efficient at time of adoption. Based on our methodology,

we propose the development of a National Retrofit Investment and Performance (NRPI) database.

This database would track building-level energy audits, implemented energy conservation measures

and retrofit investments and their financial and energy performance metrics, and pre/post energy

use profiles.



1. Introduction

There is an extensive body of research on the opportunity for retrofitting existing commercial

buildings to reduce national energy use and carbon emissions (Chidiac et al., 2011; Koomey et al.,

1998; Ma et al., 2012; Papadopoulos & Kontokosta, 2019). Despite the potential positive impacts of

such a reduction, the pace of adoption of energy efficient practices and technologies has been slow, and

significant barriers–both perceived and actual–persist (Ardente et al., 2011; Eichholtz et al., 2010;

Fuerst & McAllister, 2009; Koomey et al., 2001). These barriers include information asymmetries

between stakeholders, uncertainty over future savings, lack of knowledge about energy technologies,

first-cost capital constraints, economic dis-incentives including the split-incentive problem, and the

decreasing cost of fuel (Fuerst et al., 2014; Mills et al., 2006; Palmer & Walls, 2015). To overcome

these obstacles, the recent proliferation of energy disclosure policies in U.S. cities has generated

significant new streams of data on energy use in buildings to benchmark performance, led by New

York Citys (NYC) Local Law 84 (LL84) (Hsu, 2014; Kontokosta, 2013, 2015).

New energy disclosure, audit, and retro-commissioning requirements create detailed inventories

of building energy use, systems, and potential energy conservation measures (ECMs) (Mathew et al.,

2015). Energy audit and retro-commissioning requirements have also begun to emerge alongside dis-

closure mandates, providing owners, tenants, and policymakers with detailed accounting of building

systems and energy end-use, as well as the energy savings and cost savings potential of the imple-

mentation of specific ECMs. NYC Local Law 87 (LL87) is the first city-wide building energy audit

mandate in the U.S. (Marasco & Kontokosta, 2016). Early studies indicate that energy disclosure

is driving meaningful reductions in building energy use in U.S. cities (Meng et al., 2017; Palmer

& Walls, 2015; Papadopoulos et al., 2018). Yet few studies have examined the impact of audits

on energy use reductions and retrofit investment decisions in large office and multifamily buildings.

This is an important omission; mandatory audits implicitly provide a natural experiment for the

measurement of the hurdle rates of return on investment that must be exceeded before energy ef-

ficient investment is deemed profitable in the private sector. Such insights can subsequently guide

education, regulations, or subsidy policies.

In addition to these informational regulations, cities are beginning to introduce carbon reduction

and energy efficiency mandates. In NYC, the Climate Mobilization Act requires buildings over

25,000 square feet to reduce carbon emissions by 40% from 2005 levels by 2030 and 80% by 2050.

Given regulatory and market pressures to improve energy efficiency, building owners, investors, and

policymakers need to understand the financial implications of the various pathways to energy use
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reductions through building retrofits. Previous research has shown that the most significant barriers

to retrofit adoption are perceived or expected long payback periods on ECM investments and a lack

of access to capital to fund implementation costs (Amstalden et al., 2007; Jackson, 2010; Kontokosta,

2016). However, despite these survey-reported findings, there is little understanding of the potential

return on investment of retrofit measures, how returns vary with individual ECMs and packages of

ECMs, and the hurdle rate required by owners to invest in retrofits in practice.

This paper examines a critical, and previously unexplored, question about the link between

building energy retrofits and financial performance. Using a unique, large-scale database of building-

specific energy use, systems, financial metrics, construction permit records, and energy audit data,

we estimate the hurdle rate for energy retrofit investments, using actual audit data and permit-

ted renovation work. By modeling the internal rate of return (IRR) and net present value (NPV)

for energy retrofit investments for different property types and building characteristics, we model

the perceived risk of these investments and discuss incentive and regulatory mechanisms that can

overcome financial and informational barriers to the adoption of energy efficiency measures. Ulti-

mately, this study presents a detailed analysis of the potential return profiles for building retrofits

across building types and characteristics, and what ECMs are most likely to be adopted and in what

circumstances.

2. Data

2.1. Building Audits (LL87)

The comprehensive energy data ecosystem in NYC provides an unprecedented opportunity to ex-

amine the relationship between energy performance, retrofit energy savings potential, and financial

performance in commercial and residential buildings. The City has recently introduced several policy

innovations to drive energy efficiency market transformation. In 2010, Local Law 84 was launched,

mandating all properties larger than 50,000 sq.ft. to annually report their energy consumption. In

2013, Local Law 87 required a randomly-identified subset of LL84-covered properties each year to

undertake an energy audit and report its results. The data collected under LL87 include informa-

tion about a building’s physical characteristics, energy systems, as well as ECM recommendations

with their associated implementation costs and energy/cost savings potential. These mandatory

audits, known as Energy Efficiency Reports, must be conducted by a certified design professional

to American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Level 2
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standards.1

We analyze data from approximately 4,000 building audits reported through LL87 between 2013

and 2016. The NYC Mayor’s Office of Sustainability (MOS) identifies buildings that have to comply

with LL87 by matching the last digit of the reporting year and the last digit of Borough-Block-Lot

(BBL) 10-digit unique property identifier (NYC Mayor’s Office of Sustainability, 2019). For the

year 2015, as an example, MOS selected all properties with 5 as the last digit of their respective

BBLs. Therefore, each audit is associated with a unique building identifier that can be used to join

the audit data to energy performance (LL84), zoning and tax information (PLUTO), and building

permit records. We constrain our analysis to the main two building typologies encountered in the

data, namely multifamily residential buildings and office buildings. Although LL87 are reported by

certified energy professionals, we encounter several misreported or erroneous entries that need to be

treated before analysis. Data pre-processing proceeds in the following steps: First, we standardize

BBLs and remove erroneously reported entries. Second, we identify properties where no ECMs

were recommended. After merging audit records in different years based on BBL-BIN (Building

Identification Number) pairs, we parse Gross Floor Area (GFA) and Energy Use Intensity (EUI)

values into regular expressions (e.g. “400,392.923 square feet” becomes “400392”). We then extract

the ECM recommendations and remove those that are missing one of the following fields: category,

implementation cost, annual cost savings, annual energy savings. Finally, we exclude from our

analysis ECMs with payback periods longer than 50 years and less than 0.5 years, as we identify

these as outliers based on the sample distribution.

2.2. Building Construction and Renovation Permits

Several major cities in the U.S., including NYC, have digitized the construction and renovation

permit application process. In NYC, the Department of Buildings (DOB) maintains building permit

records that includes BIN, BBL, building type, permit type, job type, filing date, job description,

and owner’s information (New York City Department of Buildings, 2015). The permit type is a series

of codes describing the proposed work in the property based on the nature of the application, such

as major alteration (i.e. alteration that will change the use, egress, or occupancy of the building),

minor alteration (i.e. multiple types of work that do not affect the use, egress, or occupancy of

the building), and minor work (i.e. typically repair work that does not affect the use, egress, or

occupancy of the building). Table 1 is a summary of building alteration permits from 2013 to 2017.

NYC recorded a total of 188,051 alteration permits with the majority (75%) classified as minor

1For more information: Local Laws of the City of New York, No. 78.http://www.nyc.gov/html/planyc2030/

downloads/pdf/ll87of2009 audits and retro-commissioning.pdf

4

http://www.nyc.gov/html/planyc2030/downloads/pdf/ll87of2009_audits_and_retro-commissioning.pdf
http://www.nyc.gov/html/planyc2030/downloads/pdf/ll87of2009_audits_and_retro-commissioning.pdf


alterations. Of these, approximately 12.39% (n=23,306) of the total permits occurred in buildings

that comply with LL87. By matching permit data and audit records by BBL and comparing the

audit date and permit filing date, we identify 6,111 permits related to post-audit actions, which

includes 21 major alterations, 5,182 minor alterations, and 908 minor work projects. We note that

a building can have multiple permits attributed to it in the post-audit period.

Table 1: Building alteration works by permit type and critical components

Permit type

Sample size

2013-2017 All permits All permits in buildings comply with LL87 Post-audit permits

Major Alteration (A1) 6313 87 21

Minor Alteration (A2) 140689 20078 5182

Minor Work (A3) 41049 3141 908

Total 188051 23306 6111

In addition to permit typology, NYC DOB’s permitting system provides multiple check-boxes

for common alteration actions (e.g., boiler, mechanical, HVAC2) (DOB, 2016). As Table 2 shows,

building enlargement is not common due to the building types that are covered by LL87 and zon-

ing regulations that constrain building expansion. Although about 65.5% of minor work permits

checked equipment, the relatively low percentages indicate that these check-box information fields

do not capture the full extent of renovation work. Therefore, the current binary variables in a

permit application provide limited information describing the proposed work. Therefore, extracting

information from the user-generated text input field for the scope of work description is necessary

to understand the nature and extent of permitted work. The DOB permit filing system requires

that applicants (e.g., a licensed architect or engineer) provide a text description to summarize the

proposed work, including major actions (e.g., replace, remodel, renovate), building systems affected

(e.g., boiler, wall, fixture), and locations of work within the building (e.g., kitchen, bathroom, bed-

room) (Table 3). We use natural language processing and text mining to standardize and extract

the information contained in these text fields.

Table 2: Post-audit alteration works by permit type and critical components

Permit

Component
Plumbing Mechanical Boiler Equipment Horizontal Enlarg. Vertical Enlarg.

Major Alteration (n=21) 17.4% 8.7% 0.0% 0.0% 0.0% 4.3%

Minor Alteration (n=5182) 23.3% 11.7% 1.2% 1.5% 0.0% 0.0%

Minor Work (n=908) 0.0% 0.0% 0.0% 65.5% 0.0% 0.0%

2Heating, ventilation, and air conditioning.
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Table 3: Sample post-audit building alteration permits

BIN # BBL Permit Type Time Full Description

1025xxx 1010360xxx Major Alteration 2015-08-20

Filing to convert a portion of the existing stor-

age area to a tenant’s only laundry room. New

non-load partitions, doors, ceiling and finishes.

Installation of dryer duct ventilation system.

Plumbing work for new laundry equipment as

shown on drawings filed herewith.

1037xxx 1013150xxx Minor Alteration 2015-04-17

Cooling tower replacement on the 19th floor

roof as per plans filed herewith. No change in

use egress or occupancy.

1042xxx 1013990xxx Minor Work 2015-05-11
Hereby filing for installation of new steel and

laminated glass marquee.

NOTES: This table illustrates partial key information and does not include full permit data attributes.

Figure 1: Data integration and analysis workflow.

3. Methodology

Figure 1 summarizes our overall data integration and analysis approach. Using four years of

energy audit reports and five years of permit records, we first extract detailed descriptions and

metrics for each ECM recommendation by building. We then conduct text mining to generate a

dictionary of recommended upgrades for each individual ECM category derived from the full audit

sample. We then match audit recommendations with DOB building permit scope of work data

to identify ECM adoption based on actual renovation activity subsequent to an audit. For all

buildings, we estimate NPV and IRR for three scenarios representing return-maximizing, energy

savings-maximizing, and balanced packages of ECMs. For buildings where audit recommendations

were adopted, we calculate the IRR based on the bundle of adopted ECMs, and compare these

values to the three potential adoption scenarios described above.
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Figure 2: Sample building NPV curve.

3.1. Building Audit NPV Curves

Using the implementation cost, energy savings, and annual cost savings data for individual ECM

recommendations provided in the audit report, we compute the NPV for each as follows:

NPV =

n∑
t=0

Rt

(1 + i)t
(1)

where n is the number of time periods of the investment, Rt is the net cash flow at period t,

and i is the discount rate. For the purpose of this study, we assume n = 15 years and i = 0.1.

After calculating the NPV for individual ECMs, we are able to compute the cumulative NPV for

all ECM recommendations for each building and plot the calculated values by cumulative energy

savings. Figure 2 shows the NPV/energy savings curve for a sample building in the data, with each

point indicated on the curve associated with a specific ECM. Note that we normalize both NPV and

energy savings by the building area to allow for comparison across building types and characteristics.

The curve presented in 2 is one of three commonly-identified NPV profiles, with the other two being

a linear positive slope and the other a linear negative slope.

In this particular example, we see that the NPV curve peaks after two ECMs (specifically, HVAC

controls and occupancy sensors for the lighting system), and the remaining ECMs are NPV negative.

However, only the last recommendation for conveying systems causes the building’s cumulative
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NPV to drop below zero. Calculating cumulative NPV/energy savings curves for each building in

the data allows us to study inflection points in the curves, draw a more nuanced picture of the

proposed ECMs’ economic feasibility, focus on certain subsets of ECMs, and compute additional

financial metrics. We calculate a NPV curve by plotting cumulative NPV (normalized per square

foot) against energy savings per square foot, with each point on the curve represented by a single

ECM. Based on these points, we define three bundles of ECMs or retrofit scenarios: NPVmax: the

set of ECMs that maximize NPV, NPVneutral: the set of ECMs yielding cumulative NPV close to

zero, and EnergySavingsmax: all ECMs that would result in the greatest possible energy savings. For

each scenario, we calculate the IRR for the identified ECMs that comprise each scenario. Moreover,

based on the building’s physical characteristics (age, area, EUI), we subset the data and study the

aforementioned metrics by building sub-categories.

3.2. Text Mining and Audit-to-Permit Matching

We first identify buildings with alteration work subsequent to the date the audit was performed

on the building, according to the filing dates of both audits and permits (if any). If a building has

no post-audit permit record, we assume no renovation activity occurred in the building and thus no

audit recommendations were adopted. It is possible, however, that the implementation of a particular

ECM would not require the filing of a building permit; we discuss this scenario in more detail below.

In the LL87 audit data, each ECM recommendation has a category-suggestion structure. Based on all

recommendations, we generate ECM category-specific dictionaries by extracting text from auditors’

recommended improvement (e.g. upgrade to LED). We use part-of-speech (POS) tagging to clean

the raw permit descriptions by dropping conjunctions, determiners, pronouns, and punctuation. For

each word, we calculate its frequency based on its total appearance divided by total appearance of

all vocabulary. Therefore, a final dictionary contains all unique words and their frequency, which are

objectively quantified based on empirical audit records. Figure 3 are word-clouds that visualize the

top 30 words for each ECM category. Using these dictionaries, we estimate the adoption likelihood

for each ECM recommendation, according to its identified post-audit building permit descriptions.

For building permit descriptions, we clean input text for the scope of work using a similar

POS tagging process. To compare the content between a permit description and a specific ECM

recommendation, a word-matching algorithm proceeds in the following three steps: First, according

to the ECM category, it associates the scope of work description with the dictionary mentioned

above. Then, based on this dictionary, it identifies the words that appear in the permit description.

Finally, it returns two new variables: (1) the total number of matched words and (2) a list of matched

words. This approach quantifies the relationship between post-audit building permit descriptions

and each ECM recommendation category as an estimate of the likelihood of ECM adoption.
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Figure 3: Word-cloud of dictionary for each ECM category.

4. Results

4.1. Data summary and matching results

The final dataset contains a total of 22,230 ECM recommendations extracted from 3,632 audits

(Table 4).

Table 4: Building audit (LL87) data summary

Audits ECMs Period
Audits with post-audit alteration

Audits ECMs Post-audit alterations

3632 22230 2013-2016 1385 6545 6111

Figure 4 compares the proportion of each ECM category recommended for office and multifamily

buildings, respectively, together with the percentage adopted. Several categories, such as lighting,

HVAC control and sensors, distribution system, and heating system improvements, have a similar

prevalence across the two building types. In contrast, office buildings have a much higher percentage

of recommendations for motors, cooling system, and ventilation retrofits, while multifamily buildings

are more likely to have envelope and domestic hot water ECM recommendations. As expected,

lighting improvements constitute the largest share of recommended and adopted ECMs.

Figure 5 presents a box-plot of the calculated simple payback period by ECM category. The

distribution of payback periods within each category are a result, in part, of the range of specific
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Figure 4: Percentage of recommendation types by ECM category.

recommendations contained within each of the higher-order ECM categories (e.g., envelope, convey-

ing system) and the variance in auditor estimations. Outliers reflect erroneous entries (indicated by

the diamond points), most likely caused by data entry error or incorrect assumptions or reference

data used by the auditor.

For all buildings, we estimate the IRR for the NPVmax, NPVneutral, and EnergySavingsmax

scenarios. Table 4.1 presents descriptive statistics for the return-maximizing and energy savings-

maximizing cases, by building type, age, and size (quartiles). Newer and larger office buildings are

found to have higher mean IRR in both retrofit scenarios, while this pattern tends to be reversed

in the case of multifamily buildings. Overall, however, we find relatively consistent expected IRRs

across observed building characteristics.

4.2. Comparing adopters and non-adopters

After matching LL87 audit data and DOB building permits by BBL, we identify 1,385 buildings

with an audit and at least one building permit filed after the date of the audit. We define this as

a post-audit alteration. There are a total of 6,111 post-audit alterations since one building may file

multiple alteration applications. For buildings with post-audit alterations, a total of 6,545 ECMs

are matched between audit and permit, including lighting (n=2,028), domestic hot water (n=934),

envelope (n=856), HVAC controls and sensors (n=634), distribution system (n=537), heating system

(n=427), motors (n=234), fuel switching (n=175), cooling system (n=168), ventilation(n=160), on-
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Table 5: Summary of ECMs by category.

Office

ECM Category
# of Times % of Implementation Cost ($/sq.ft.) Energy Savings (KbtU/sq.ft.) Median Median Median

Recommended Audits median mean std median mean std Payback IRR NPV

Lighting 574 87.6% 0.06 0.09 0.08 0.31 0.47 0.42 3.3 0.29 0.06

Domestic Hot Water 73 16.4% 0.06 0.12 0.12 0.62 1.23 1.39 3.6 0.30 0.03

Envelope 125 21.9% 0.34 0.80 0.97 0.99 2.40 2.72 7.8 0.09 -0.01

HVAC Controls & Sensors 216 39.6% 0.16 0.19 0.16 1.30 1.65 1.30 3.8 0.25 0.06

Distribution System 161 30.4% 0.03 0.07 0.20 0.36 0.56 0.59 4.1 0.23 0.01

Heating System 134 28.1% 0.19 0.41 0.55 1.66 2.18 2.02 4.4 0.21 0.03

Motors 220 33.3% 0.12 0.14 0.10 0.55 0.73 0.61 4.0 0.24 0.07

On Site Generation 35 8.5% 1.08 1.21 0.85 1.73 2.60 3.02 11.3 0.03 -0.28

Fuel Switching 60 14.7% 1.23 1.47 0.76 1.29 1.46 1.14 4.3 0.22 0.59

Ventilation 92 14.9% 0.17 0.22 0.19 0.95 1.51 1.62 4.5 0.20 0.04

Cooling System 165 28.1% 0.29 0.63 0.78 0.92 1.81 2.22 6.3 0.13 0.01

Conveying Systems 42 10.2% 0.51 0.79 0.64 1.33 1.36 0.90 8.1 0.08 -0.02

Process and Plug Loads 12 3.0% 0.09 0.10 0.10 0.32 0.45 0.54 5.2 0.17 0.01

Other 21 5.0% 0.08 0.20 0.29 0.59 0.91 0.94 3.30 0.29 0.03

Multifamily

ECM Category
# of Times % of Implementation Cost ($/sq.ft.) Energy Savings (KbtU/sq.ft.) Median Median Median

Recommended Audits median mean std median mean std Payback IRR NPV

Lighting 5028 87.5% 0.03 0.05 0.05 0.14 0.23 0.23 3.2 0.30 0.03

Domestic Hot Water 3259 63.4% 0.09 0.17 0.16 1.70 2.25 1.85 4.6 0.20 0.03

Envelope 2697 42.8% 0.36 0.80 0.96 1.86 3.15 2.97 16.7 -0.02 -0.20

HVAC Controls & Sensors 1788 43.6% 0.25 0.26 0.13 3.56 3.86 1.75 4.8 0.19 0.09

Distribution System 1312 35.3% 0.02 0.04 0.04 0.52 0.83 0.82 3.7 0.26 0.02

Heating System 1063 28.8% 0.10 0.39 0.57 2.15 2.82 2.30 4.9 0.19 0.02

Motors 613 15.8% 0.07 0.09 0.06 0.32 0.45 0.38 4.1 0.23 0.04

On Site Generation 735 22.2% 1.30 1.47 0.78 2.82 3.20 2.11 9.9 0.05 -0.33

Fuel Switching 432 13.3% 1.67 1.88 0.82 1.90 1.84 1.42 4.2 0.23 1.47

Ventilation 275 7.5% 0.11 0.23 0.24 1.44 2.26 2.34 5.0 0.18 0.02

Cooling System 113 3.2% 0.15 0.40 0.60 0.36 1.33 2.97 7.3 0.10 0.00

Conveying Systems 118 3.7% 0.67 0.88 0.65 0.78 0.89 0.39 10.6 0.05 -0.11

Process and Plug Loads 141 4.1% 0.08 0.15 0.14 0.49 0.55 0.40 6.7 0.12 0.00

Other 113 3.2% 0.09 0.20 0.21 0.27 0.48 0.68 7.3 0.1 0.00

Submetering 78 2.4% 0.35 0.42 0.28 1.68 1.83 1.12 2.7 0.36 0.28

NOTES: Median, mean and standard deviation are reported within 10th - 90th percentile range.

site generation (n=147), conveying systems (n=77), process and plug loads (n=40), and sub-metering

(n=33).

For each ECM suggestion, our text-matching algorithm retrieves associated permit descriptions

and identifies matched words based on previously collected ECM-category dictionary. Based on

the distribution of total matched words, we define three different matching criteria. We use a 90

percentile threshold (matched words >= 6) as a conservative matching scenario (labeled as ‘90th

pec’ in result summary) and 75th percentile (matched words >= 3) as our base matching scenario

(labeled as ‘75th pec’ ). Furthermore, most building permit descriptions do not report lighting

improvements (e.g., upgrade to LED, install timers) since these actions typically do not involve

building structural, mechanical, or other work defined by the DOB as requiring a permit. Therefore,

using the 75th percentile matching results, we define the third scenario by assuming the building

also implemented lighting ECMs that would not require a permit (labeled as ‘75th perc+’). In this
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Figure 5: Box-plot of estimated payback period distributions by ECM category sorted by total number of suggestions.

Table 6: IRR distributions for NPVmax and max energy saving scenarios by building type, age, and

size.
Office

Groups by Quartile Count
IRR (NPV max scenario) IRR (Max energy saving scenario)

median mean std median mean std

Age by Built Year

1850-1913 103 0.32 0.36 0.18 0.19 0.21 0.18

1913-1928 97 0.30 0.36 0.20 0.20 0.24 0.20

1928-1965 89 0.34 0.45 0.42 0.20 0.25 0.23

1965-2015 96 0.33 0.43 0.31 0.20 0.28 0.28

Built Area (sq. ft.)

50000-83750 97 0.30 0.39 0.24 0.16 0.23 0.23

83750-163000 96 0.31 0.36 0.19 0.19 0.22 0.20

163000-368898 96 0.34 0.43 0.40 0.22 0.26 0.20

368898-3018588 96 0.33 0.41 0.29 0.21 0.26 0.26

Multifamily

Age by Built Year

1853-1928 881 0.35 0.44 0.36 0.18 0.22 0.32

1928-1941 674 0.34 0.43 0.28 0.17 0.21 0.21

1941-1963 782 0.32 0.40 0.26 0.17 0.21 0.21

1963-2015 760 0.34 0.42 0.30 0.18 0.23 0.23

Built Area (sq. ft.)

19464-64650 775 0.36 0.45 0.38 0.15 0.22 0.34

64650-83844 774 0.32 0.42 0.26 0.16 0.20 0.19

83844-134674 774 0.34 0.43 0.43 0.18 0.22 0.22

134674-7842590 774 0.32 0.40 0.40 0.20 0.24 0.24
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study, we consider a building to be an “adopter” if there is at least one ECM match between the

audit recommendations and permit description.

We compare the number of audits and total number of ECMs recommended for office and multi-

family buildings grouped by non-adopters and adopters based on the ‘75th perc +’ matching criteria

(Table 7). Office buildings have a higher adoption rate (32%) compared to multifamily buildings

(19%). We also compare building characteristics, including built year, residential property owner-

ship (condominium vs. co-operative), built area, and assessed value (per square foot) by merging

with NYC Primary Land Use Tax Lot Output (PLUTO) data. Results show the adoption rate in

co-operatives (18%) is lower than condominiums (23%), possibly due to additional board approval

requirement for building improvements in co-operative properties. Two-sample t-tests indicate sta-

tistically significant differences in building area, energy use intensity (EUI), and median assessed

value per square foot. For both office and multifamily, buildings that adopt ECM recommendations

are found to be larger, higher value, and have higher potential energy savings (for office buildings

only) based on the ECMs identified in the NPVmax scenario. Although buildings that adopt tend

to be newer, there is no statistically significant difference in built year.

Table 7: Summary of audits, ECM suggestions, and building characteristics comparison between non-

adopters and adopters.
Building Type Office Multifamily

Total Audits 402 3209
Total ECM Suggestions 1960 17786

Non-Adopters Adopters Non-Adopters Adopters

Number of Audits 174 (68%) 128 (32%)
2588 (81%) 621 (19%)

Condo=314, Co-op=2274 Condo=95, Co-op=526
Number of ECMs 1250 (64%) 710 (36%) 14248 (80%) 3538 (20%)
Median Built Year 1926 1930 1941 1943
Median Building Area (sq.ft.)* 156690 199839 81045 103130
Median Site EUI (kBtu/sq.ft.)* 79 88 82 81
Median Value ($/sq.ft.)* 110 120 33 47
Median Energy Savings

3.46 4.21 6.79 5.43NPV max (kBtu/sq.ft.)*
NOTES: This table report results based on ‘75th perc +’ scenario; * = Two-sample T-test significant at 95% (p ≤ 0.05).

Energy intensity, measured as site EUI, is higher for adopter buildings than non-adopters in 2013,

but decreases over the study period. Between 2013 and 2017, EUI for adopter buildings decreased by

approximately 3.5% for office and 1% for multifamily buildings, as shown in Figure 6. Non-adopter

buildings, on the other hand, reported increasing EUI, up by as much as 5.7% over the five-year

time period. For a more detailed analysis of this relationship, please see Papadopoulos et al. (2018).

Figure 7 compares the calculated IRR based on ECMs included in (1) the NPVmax scenario, (2)

the NPVneutral scenario, and (3) actually adopted. Median IRR for adopted ECMs are found to

be 20% for multifamily and 24% for office (using the ‘75th perc +’ matching threshold). For office,

the IRR of adopted ECMs outperforms the return for the NPVneutral scenario of non-adopters,
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Figure 6: Median energy performance (site EUI) over time (2013-2017).

indicating that adopter buildings may be choosing alternatives that maximize energy savings with

net positive return on investment. From Table 4.2, the median cost for the adopted ECMs is $0.64

per square foot, which falls between the NPVmax and NPVneutral scenarios. Expected energy savings

of 3.69 kbtu per square foot is less than the expected savings from the NPVmax scenario. This is

consistent with the assumption that building owners are motivated to initiate energy improvements

by the need for repair or replacement of existing systems, but may also reflect false positives in the

ECM matching process.

Figure 7: Internal rate of return (IRR) of office and multifamily buildings.

Multifamily buildings exhibit a similar pattern, with an estimated IRR for adopted ECMs of

0.20, slightly below the IRR of the NPVneutral scenario of 0.22. First costs of adopted ECMs are

approximately $0.14 higher than the NPVmax scenario, but less than the NPVneutral ECM package.
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Table 8: Comparison between non-adopters and adopters.

IRR

NPV max scenario NPV neutral scenario Adopted ECMs

median mean std median mean std median mean std

Office
Non-adopter 0.31 0.38 0.23 0.23 0.29 0.19 – – –

Adopter 0.31 0.41 0.38 0.24 0.30 0.18 0.24 0.27 0.22

Multifamily
Non-adopter 0.34 0.43 0.31 0.22 0.28 0.24 – – –

Adopter 0.32 0.41 0.27 0.22 0.29 0.22 0.20 0.25 0.27

Energy Savings (kBtu/sq.ft.)

NPV max scenario NPV neutral scenario Adopted ECMs

median mean std median mean std median mean std

Office
Non-adopter 3.46 6.96 14.87 4.15 7.16 8.71 – – –

Adopter 4.13 6.58 8.00 5.21 8.00 9.70 3.69 6.04 6.19

Multifamily
Non-adopter 6.79 9.35 9.34 8.79 11.75 11.19 – – –

Adopter 5.28 7.88 8.00 7.33 10.57 10.98 4.19 6.52 6.92

Median First Cost ($/sq.ft.)

NPV max scenario NPV neutral scenario Adopted ECMs Max savings scenario

Office
Non-adopter 0.44 0.66 – 1.23

Adopter 0.54 0.75 0.64 1.29

Multifamily
Non-adopter 0.34 0.76 – 1.22

Adopter 0.39 0.74 0.53 1.47

Expected energy savings are lower than those in the NPVmax and NPVneutral alternatives.

For both building types, there is not a clear relationship between the variability in estimated

payback period (as a proxy for uncertainty in projected cost and savings) and the adoption of each

ECM category. Figure 8 presents the adoption rate for ECM categories plotted against the range in

projected payback period, measured by the difference (in years) between the 95th percentile and 5th

percentile estimate for each ECM. While the majority of ECM adoption rates are in the expected

range, such as lighting, ventilation, and domestic hot water, the high adoption rate of the envelope

ECM category indicates a potential false positive match between audit and permit descriptions.

Given the high implementation cost of envelope retrofits, and the relatively long payback period,

envelope work is typically driven by other factors than energy efficiency. The potential over-matching

of the envelope ECM category may be impacting the IRR and NPV estimates for adopter buildings,

given the low return and negative NPV associated with this measure.

We also examine the extent to which additional ECMs, beyond those adopted, would have

improved expected return. Table 4.2 presents the “next-best” ECM for office and multifamily

adopter buildings, respectively. The next-best ECM is defined as the ECM with the highest NPV

that was not implemented as part of the bundle of ECMs matched to the building’s renovation

permit. We find that the IRR for office buildings would fall by 1% and would increase by 2% for

multifamily properties. The most commonly identified next-best ECM for office buildings is fuel

switching, a relatively high-cost investment that is dependent on infrastructure access to alternate

fuel sources (e.g. natural gas) and on the prices variability of different fuels. For Multifamily
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Figure 8: The payback period range between the 5th and 95th percentiles versus the rate of adoption for each ECM

category.

Table 9: Summary of next best ECMs.
Next Best ECM to Adopt

Office Multifamily
Category Number Category Number
Fuel Switching 11 Distribution System 80
Distribution System 8 Fuel Switching 68
Motors 7 Heating System 46
Conveying Systems 5 Motors 22
Other 4 On Site Generation 20
Ventilation 3 Ventilation 16
Process and Plug Loads 2 Submetering 12
On Site Generation 2 Other 10
Heating System 2 Process and Plug Loads 9
Submetering 1 Cooling System 3
General Lighting 1 Conveying Systems 1
Chiller Plant 1 Apartment AC Units 1

Two Scenarios Comparison
Metric Scenario Office Multifamily

Median IRR
ECM Adoption 0.23 0.17
ECM Adoption + 0.22 0.20

Median NPV
ECM Adoption 0.26 0.11
ECM Adoption + 0.47 0.41

buildings, distribution system improvements and fuel switching are found to be the among the

next-best ECM alternatives based on NPV.

5. Discussion and Conclusion

The primary contributions of this study are twofold: First, we develop a new method to extract

data from energy audit reports and building permit records to match ECM recommendations to

permitted renovation activity. Second, we introduce an approach to identify building- and ECM-

specific energy retrofit adoption and to estimate the IRR and other financial metrics for these

energy efficiency investments. To the best of our knowledge, there is currently no data repository
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that maintains detailed energy retrofit upgrades for individual buildings following mandatory energy

audits in the commercial building sector. This study provides the methodological foundation for a

large-scale, nation-wide study of building energy retrofit activity and provides new insight into the

return on investment for actual energy improvements put-in-place.

Our results demonstrate a 20% median IRR for adopted ECMs for multifamily buildings and 24%

for office buildings, which are lower than IRRs for retrofit scenarios yielding the highest NPV, but

consistent with NPVneutral scenarios that balance investment return with energy savings potential.

The magnitude of the IRR reflects the uncertainty in future energy savings, particularly given

the significant variation in estimated payback periods for individual ECMs based on auditor cost

and savings data. These investments are associated with energy efficiency gains of approximately

5% and 10% for office and multifamily, respectively, in overall site EUI. We also find that the

”next-best” ECM would decrease the IRR of the aggregate retrofit investment by 1% for office, but

increase the return by 2%, on average, for multifamily buildings. The next-best ECM is determined

to be fuel switching in office buildings, which has high implementation costs and variable energy

savings based on energy price fluctuations and the availability of alternate fuel source infrastructure.

For multifamily properties, the next-best ECM is the distribution systems category, which can

present challenges given constraints on access to individual apartments to do recommended work.

The technical challenges and financial implications of the next-best ECM suggest that owners are

balancing return and energy savings in the decision process.

We acknowledge that our approach has several limitations, primarily due to data sparsity and

audit quality. A number of assumptions are made to estimate NPV of the various ECM scenarios,

including discount rate and useful life of the installed system or improvement. Thus, future analysis

will include uncertainties based on distributions of input parameters. Different reporting systems

(audit vs. permit) and data entry standards (auditor vs. contractor) create uncertainties in text

matching. Building permit work descriptions are often vague and may not capture all ECM categories

since several ECMs may not constitute work requiring a building permit. For example, a building

owner often does not need to file a permit application to DOB for lighting improvements. This

missing information may cause an underestimation of lighting ECM adoptions, although we account

for this in our model. Data quality is also a significant concern for both energy audit reports

and permit scope of work descriptions. We find inconsistent input formats, naming conventions, and

misreported or erroneous savings and cost projections. A data standardization effort for energy audit

reports is underway in NYC; however, this does not address the underlying issue of the reference

data and metrics used by auditors to estimate future savings.

Although multiple agencies and organizations collect data related to building energy performance,
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Figure 9: A schematic illustration of future integrated building information system.

energy audits, and renovation work, these efforts are largely siloed and constrained by sparse datasets

representing single building types, regions, or portfolios. Our methodology can be used to better

integrate audit data, building characteristics, and permit scope of work information. Figure 9

presents a schematic illustration of how audit data (LL87) and energy benchmarking data (LL84)

can be linked with renovation permit data to create an integrated information system based on a

single unique building identifier. To improve data reliability, consistency, and geographic coverage,

we propose to develop a National Retrofit Investment and Performance (NRPI) database. This

database would track building-level energy audits, implemented energy conservation measures and

retrofit investments and their financial and energy performance metrics, and pre/post energy use

profiles. The NRPI would integrate directly with U.S. Department of Energy’s Building Performance

Database and other federal resources (such as EPA’s Portfolio Manager), and provide a detailed

repository for actual building audits and retrofit measures.

Additional future work will study the difference between ECM implementation costs and sav-

ings for individual buildings with the observed (predicted) price premium for Energy Star labeled

buildings of that property type. This will allow us to determine whether observed premia for green

certifications are derived from the cost savings associated with energy efficiency or other factors,

such as marketing or public relations benefits. We will further identify patterns in the variance

between the premium and retrofit cost by building type. physical characteristics (building age, size,

etc.), and investor class and ownership type.

As cities introduce more expansive regulations on building energy efficiency and carbon emissions

reductions, a complete understanding of the financial implications of retrofit investments is needed

to evaluate viable pathways toward near- and long-term sustainability goals. For building owners,

our IRR and NPV models provide greater insight into the financial returns to individual ECMs and

packages of ECMs. For policymakers, the analysis can be used to assess the economic feasibility of

new and existing regulations, and determine where incentives can help overcome barriers to adoption.

By identifying buildings that adopted energy efficiency investments, and quantifying the return on
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those investments, we are able to measure a critical component of the perceived barriers to greater

energy efficiency in existing buildings.
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Appendix

Table 10: Major suggestions in each ECM Category

ECM Category Suggestions (%)

Lighting
Upgrade to LED (58%), Other (11%), Install Occupancy/Vacancy Sensors

(7%), Upgrade to Fluorescent (7%), Upgrade Exterior Lighting (6%)

Domestic Hot Water
Separate DHW from Heating (38%), Install Low-Flow Aerators (25%), Other

(9%), Insulate DHW Piping (7%), Install Low-Flow Showerheads (6%)

Envelope
Increase insulation - Roof (20%), Replace Windows (16%), Sealing - Door

(16%), Increase insulation - Wall (14%), Add Window Films (9%)

HVAC Controls and Sensors
Install or Upgrade EMS/BMS (43%), Install TRVs(28%), Change Set Points

/ Setbacks - Heating (9%), Install Indoor Sensors (6%), Other (5%)

Distribution System
Insulate Pipes (73%), Other (7%), Install or Upgrade Master Venting (7%),

Replace or repair Steam Traps (5%), Upgrade Pumps (2%)

Heating System
Other (24%), Clean & Tune Boiler/Furnace (19%), Replace Boiler (15%),

Upgrade Burner (13%), Upgrade Boiler (10%)

Motors
Install VFDs (55%), Upgrade Motors (38%), Other (4%), Remove Motors

(3%), Install or Upgrade EMS/BMS (0.2%)

On Site Generation
Install Solar/Photovoltaic (57%), Install Cogeneration Plant (28%), Solar

(13%), Other (0.4%), Low Flow Fixtures (0.3%)

Fuel Switching

#6 oil or #4 oil to natural gas (58%), #2 oil to natural gas (27%), #6 to

dual fuel (5%), District steam to on-site generation (3%), District steam to

on-site generation (3%), Utility steam to on-site generation (3%)

Ventilation

Other (31%), Install Demand Control Ventilation (20%), Install CAR

Dampers (17%), Install Exhaust Fan Timers (16%), Upgrade Fan/Air Han-

dlers (8%)

Cooling System
Other (34%), Replace packaged units (13%), Replace Chiller (12%), Upgrade

packaged units (11%), Upgrade Chiller (9%)

Conveying Systems
Other (41%), Upgrade Motors (31%), Add Elevator Regenerative Drives

(14%), Upgrade Controls (13%), Regenerative Drive for Elevators (1%)

Process and Plug Loads

Other (54%), Replace Washing Machines (39%), Replace Clothes Dryers

(3%), Automatic Shutdown / Sleep Mode for Computers 2%), Install So-

lar/Photovoltaic (1%)

Other
Other (82%), Low Flow Fixtures (13%), Install Solar PV System (1%), LBS

Smart Meters (1%), Insulate piping (1%)

Submetering
Install Submetering (73%), LBS Smart Meters (22%), Sub-Metering (1%),

Other (1%), Low Flow Fixtures (1%)
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Data Sources
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NYC DOB (2018). Building job application filings. New York City Department of Buildings.

Available from: https://data.cityofnewyork.us/Housing-Development/DOB-Job-Application-

Filings/ic3t-wcy2

LL84 Disclosure Data (2014). Energy and Water Data Disclosure for Local Law 84 2014 (Data for

Calendar Year 2013). Mayors Office of Sustainability. Available from: https://data.cityofnewyork.us/

Environment/Energy-and-Water-Data-Disclosure-for-Local-Law-84-/rgfe-8y2z
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