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Executive Summary 

As commercial buildings form the main core of a city, the promotion of energy-efficient 

commercial buildings can significantly contribute to overall sustainability in a city. Recently, 

several U.S. cities and states have been trying to become more energy efficient by improving their 

energy consumption by adopting energy benchmarking and public disclosure of their consumption 

levels, which is expected to contribute to an increased awareness amongst tenants and investors 

especially among commercial properties as another measure of market comparison. An increasing 

sensitivity among corporate executives towards sustainability and the embracement of such 

practices by local, state, and federal agencies (e.g., US General Services Administration) has led 

to a growing demand for energy efficient buildings. Therefore, mandatory energy benchmarking 

and disclosure policies could possibly affect the leasing and purchasing decisions of real estate as 

the data become more readily available. Consequently, such policies are expected to motivate the 

owners of less energy efficient buildings to invest in energy retrofits with the goal of improving 

the short and long-term performance and marketability of their buildings. 

However, there is a lack of studies specifically aimed at investigating the impact of such 

policies on office buildings of major cities. This study focuses on (1) assessing the real estate 

performance of sustainable buildings before and after the policy, while considering market cycles 

(e.g. seasonality); and (2) exanimating if different characteristics (e.g., building class level) of a 

building will affect the impact of the policy on its real estate performance.  

Two interrupted time series analyses (ITSA), including one multiple-group ITSA and one 

single-group ITSA were used to serve for the research objectives. The multiple-group ITSA was 

conducted based on the annual average occupancy rates of the office buildings for each class and 

each city, in order to examine the change(s) after the policy implementation and then to infer the 
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impact of the benchmarking policy on real estate performance. In order to maximize the use of the 

collected data, and to avoid any loss of information caused by the aggregated-data-based analysis, 

we adopted the single-group ITSA to examine if the implementation of the policy resulted in a 

shift in the occupancy rate for each building. 

Generally, the results revealed that for some cities, energy efficient buildings have better 

real estate performances for both analyses, but it is hard to conclude that the policy impacts on 

energy efficient buildings are more positive than less energy efficient buildings. Specifically, the 

results obtained from the multiple-group ITSA revealed that the energy policies might not 

immediately affect the real estate performance of office buildings. However, after the policy 

implementation, the real estate performances of energy efficient buildings exhibit continuously 

increasing trends, which is evidenced by the ITSA of all the four cities. The results are mixed for 

New York City, while Washington DC exhibited a decline in the real estate performance after the 

policy implementation. This effect may also have its roots in the financial crisis as the 

implementation happened in 2008 and 2009 for the first group of cities with rents being much 

higher in these properties. The result from the single-group ITSA is consistent with the result of 

the first analysis. For the cities of San Francisco and Chicago, energy efficient buildings have 

higher ratios of the ‘positive and significant / significant’, which implies that energy efficient 

buildings are more likely to be positively affected by the policy. However, such ratios are relatively 

low for New York and Washington DC, which may be caused by other confounding factors, such 

as the financial crisis.  

This research is expected to contribute to the body knowledge in sustainability, public 

policy, and real estate. This study can also be viewed as a significant leap forward in facilitating 

informed decision making of building owners in future energy-efficiency improvement projects. 
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An important next step would be to analyze the disclosed energy performance in relationship to 

the real estate performance of properties, while also accounting for additional property amenities.  
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Chapter 1 Introduction 

1.1 General Background 

According to the Commercial Buildings Energy Consumption Survey (CBECS), the 

number of commercial buildings in the U.S. has increased from 3.8 million to 5.6 million between 

1979 and 2012, with the footprint expected to increase to 124 billion square feet by 2050 (U.S. 

Energy Information Administration 2018). As commercial buildings form the main core of a city, 

the promotion of energy-efficient commercial buildings can significantly contribute to overall 

sustainability in a city (Cox et al. 2013). In recent years,  several U.S. cities and states have been 

trying to become more energy efficient by improving their energy consumption through energy 

benchmarking and public disclosure of consumption levels (Institute for Market 

Transformation/Buildingrating.org, 2019), which is expected to contribute to an increased 

awareness amongst tenants and investors especially among commercial properties as another 

measure of market comparison.  

Studies have shown that sustainable, energy-efficient buildings (e.g., LEED, Energy Star) 

commission higher rents and sale prices while achieving lower vacancies than comparable non-

energy-efficient buildings (Dermisi 2013; 2014; Eichholtz et al. 2013; Dermisi and McDonald 

2011). An increasing sensitivity among corporate executives towards sustainability and the 

embracement of such practices by local, state, and federal agencies (e.g., US General Services 

Administration) has led to a growing demand for energy efficient buildings. Therefore, mandatory 

energy benchmarking and disclosure policies could possibly affect the leasing and purchasing 

decisions of real estate customers as they become more aware of such data. Consequently, such 

policies are expected to motivate the owners of less energy efficient buildings to invest in energy 
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retrofits with the goal of improving the short and long-term performance and marketability of their 

buildings. 

However, there is a lack of studies specifically aimed at investigating the impact of such 

policies on office buildings of major cities. In view of the significance of the energy benchmarking 

and disclosure policy as well as their potential impacts on real estate markets, the research team 

examined previously the effectiveness of the benchmarking policy on  the real estate performance 

of downtown Chicago office buildings with promising preliminary results, which led to this study 

which expanded the analysis to additional cities across the U.S.  

 

1.2 Research Objectives 

This research aims to expand the previous effort on assessing the effectiveness of the 

energy benchmarking and disclosure policy on real estate performance by 1) adding more major 

cities across the U.S. into the analysis and 2) conducting more comprehensive and robust analyses. 

Specifically, the objectives of the present research project include:  

(1) assessment of the real estate performance of sustainable buildings before and after the 

policy, while considering market cycles (e.g. seasonality); 

(2) examination if different characteristics (e.g., building class level) of a building will 

affect the impact of the policy on its real estate performance. 

The present project focuses on four cities across the U.S., including New York City, 

Washington D.C., San Francisco, and Chicago, for the following reasons: 

(1) Disclosure policy length and geographic location: the aforementioned cities have 

longer-term and more consistent data (Washington DC – since 2008, New York - since 
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2009, San Francisco - since 2011 and Chicago - since 2013) and are geographically 

disbursed; 

(2) Level of sustainability awareness: This research targets to analyze the effect of the 

disclosure in a city with a population more sensitive to sustainable practices in 

comparison to other cities; 

 

1.3 Report Organization 

Chapter 2 of the report includes an extensive literature review regarding energy efficiency 

policies and their impacts on real estate performance. The literature review also showed that this 

project is the first of its kind. Therefore, the study of this nature can be viewed as a significant leap 

forward in facilitating informed decision making of building owners in future energy-efficiency 

improvement projects. Chapter 3 introduces the databases used in this research and describes the 

steps of data processing. Chapter 4 introduces the two interrupted time series analyses which are 

the main methods to examine the policy impact of this research. The results are discussed in 

Chapter 5, while the concluding remarks are provided in Chapter 6. 
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Chapter 2 Literature Review 

Our research required the comprehensive exploration of literature in three areas relative to 

energy and buildings: (1) studies on energy efficient buildings; (2) studies on energy disclosure 

policies; and (3) studies on the impact of energy policies on real estate performance. 

 

2.1 Energy Efficient Buildings vs. Non-Energy Efficient Buildings 

Burr et al. (2010) suggested that the U.S. marketplace has been already factoring energy 

efficiency into its real estate decision-making. Additionally, Fuerst and McAllister (2009) 

compared the occupancy rates of LEED and Energy Star-labeled offices to those of non-

certified/labeled offices by using OLS (Ordinary Least Squares) and quantile regression analyses. 

They found, a significant positive relationship between building occupancy rates and their eco-

labels. Similarly, Harrison and Seiler (2011) investigated the effects of environmental certification 

on commercial real estate properties based on a sample of industrial warehouse facilities. They 

found that “green” certification (i.e., LEED and Energy Star) played an important, but contingent, 

role to the sector. Specific to the European Union, Bonde and Song (2013) examined the impact 

of the Energy Performance Certificate (EPC) on office revenues and found that better EPC ratings 

have a positive and significant effect on the revenues. In contrary, Zalejska-Jonsson (2013) found 

that energy and environmental factors have rather a minor impact on purchasing and renting 

decisions on a property. The finding indicated that when discussing the impact of energy and 

environmental factors of a buyer’s decision on a real estate property, the availability (or disclosure) 

of the information should be considered as a major factor. 
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As a different approach to the subject, Dermisi (2014) investigated the spatial distributions 

of LEED and non-LEED buildings in downtown Chicago and concluded that LEED buildings are 

generally closer to each other when compared to the non-LEED buildings. 

 

2.2 Building Energy Efficiency Policies 

Kontokosata (2011) explored the determinants of green-building policy adoption and the 

spatial and temporal diffusion of such policies. The study indicated that economic, political, and 

climate factors are significant predictors of green-building policy adoption. The cities that are 

categorized as policy innovators and early adopters of green-building policies tend to have lower 

carbon emissions per capita, are better educated, and have more restrictive land use regulations. 

Kontokosata (2012) further examined energy performance across a range of building 

characteristics, such as structural, mechanical, locational, and occupancy variables and presented 

a model to predict energy savings by using the energy benchmarking data. 

Specific to energy benchmarking and disclosure, Cluett and Amann (2013) summarized 

energy consumption disclosures in the U.S. and highlighted core elements adopted in such policies. 

In addition, a report by Better City and Meister Consultants Group, Inc. (2012) summarized the 

successful adoption of benchmarking policies in several cities. Lastly, Dunsky and Hill (2013) 

assessed the legal implications of such policies and provided recommendations for successful 

implementation of the policies. 

 

2.3 Impact of Building Energy Efficiency Policies on the Real Estate Performance 

The U.S. Department of Energy (2018) has highlighted that measuring and disclosing 

building energy use may drive their owners in making improvements to lower energy costs for 
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their property, which can also be passed through to their tenants. The impacts of benchmarking 

and disclosure policies on energy savings have been studied by theoretical analyses (e.g., Cox et 

al. 2013; Palmer and Walls 2015) and by case studies (e.g., Kontokosata 2013; Meng et al. 2017). 

O’Keeffe et al. (2015) further summarized methods of quantifying such policies’ impacts, 

including their effectiveness in reducing energy use. 

The impacts of building energy efficiency policies were examined by various researchers, 

including Laposa and Villupuram (2010) who examined the Global Reporting Initiative (GRI)’s 

corporate sustainability reporting standards  and concluded that there is a strong need for further 

disclosure and standardization of several corporate real estate-related reporting benchmarks, and 

increased transparency with respect to corporate-owned or leased properties in sustainability 

reports. Simons et al. (2009) found that the pro-green building policies (i.e., LEED and Energy 

Star) affected market penetration of green buildings in various commercial building markets in the 

U.S. Choi (2010) examined quantitatively the effect of municipal policies on commercial green 

office building designations by using the OLS regression. The findings revealed that municipal 

regulatory policies are effective in promoting green office building designations, whereas 

incentive-based policies are not effective in general. Furthermore, Cox et al. (2013) suggested that 

benchmarking policies increased the purchase of energy-efficient equipment. Similarly, Barrett et 

al. (2011) investigated the energy ordinances requiring energy retrofits for rental properties in 

Boulder, Colorado and found that early engagement of people committed to energy efficiency is 

conducive to the adoption of such requirements in an economically driven environment. 
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Chapter 3 Study Data 

3.1 The Original Data 

To achieve the planned research objectives, the data were collected from three different 

databases: 

a) Real Estate Data: Building characteristics (e.g., building class, size, etc.) and real estate 

performance data (e.g. occupancy rate) of New York City, Washington D.C., San 

Francisco, and Chicago were obtained from the CoStar Group database for office 

buildings of more than 10,000 square feet.  

b) Sustainability Labeling Data: The sustainability data such as rating, certification level, 

and points are publicly available and were obtained from the U.S. Green Building 

Council (USGBC). The Energy Star label was obtained from the Energy Star building 

database.  

c) Energy Consumption Data: The energy benchmarking and disclosure policy requires 

building owners publicly disclosure of their building’s energy performance. Such data 

were obtained from the city web portals. 

• New York City: https://www1.nyc.gov/html/gbee/html/plan/ll84_scores.shtml  

• Washington D.C.: https://doee.dc.gov/page/energy-benchmarking-disclosure  

• San Francisco: https://data.sfgov.org/Energy-and-Environment/Existing-

Commercial-Buildings-Energy-Performance-O/j2j3-acqj  

• Chicago: https://data.cityofchicago.org/Environment-Sustainable-

Development/Chicago-Energy-Benchmarking/xq83-jr8c 
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3.2 Data Processing 

The data processing consisted of two main tasks – data cleaning and database merging. In 

the task of data cleaning, incomplete, incorrect, inaccurate, and unreasonable data points were 

detected and carefully addressed (e.g., replacing, modifying, or deleting). For example, Figure 1 

exhibits that some outliers exist in San Francisco’s energy consumption database, and due to their 

irrationality, we decided to drop the data points that have the site EUI (i.e. the amount of heat and 

electricity consumed by a building) larger than 1000. We also compared the trend of mean site 

EUIs before and after the dropouts. As shown in Figure 2, the trend of site EUI after dropping out 

the outliers is consistent with that of the original data, which means the dropouts would not 

significantly impact our database. The complete process of data cleaning with the programming 

code is attached in Appendix 1. 

 

Figure 1. Boxplot of the Site EUI each year for the original database 
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Figure 2. The mean Site EUI before and after data cleaning 

 

In order to achieve the main objective (i.e., to examine the impact of energy policies on the 

real estate performance of office buildings), we needed to merge the aforementioned three separate 

data sets into an integrated dataset. Building addresses were used as the primary key (i.e., column) 

to merging the data sets, which could clearly distinguish one building from another. During the 

merging process, we first normalized the building addresses in different. A fuzzy merge method 

was then used to calculate the matching degree of the addresses in two different data sets, and the 

two addresses with the highest matching degree were identified as the same building and were 

merged. Figure 3 illustrates the merging process and the data size of each dataset before and after 

the merge is included. The complete process of data merging with the programming code is 

attached in Appendix 2. 

It should be noted that since we were not able to automatically download all real estate 

information for each building, the real estate information of each building in the merged database 

had to be downloaded manually, which limits our flexibility to continually expand the database in 

the later phases of the study. 
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Figure 3. The data merging 

 

The basic structure of the integrated database of each city has been summarized in Table 

1. A variety of variables can be used to assess the real estate performance of office buildings. In 

this study, the annual occupancy was chosen in CoStar’s database as it has the relatively high data 

quality (e.g., no missing variables) and reflects tenant demand for buildings that have or not 

embraced sustainability. The second column in Table 1 presents the available years of real estate 

data (i.e. occupancy) of each city. The third column shows the year the energy benchmarking 

policy was implemented in each city. In this project, the Energy Star label is the main feature we 

used to group the buildings as energy efficient (sustainable) buildings vs. less energy efficient 

buildings. Thus, Table 1 also summarizes the number of Energy Star label buildings and those 

without the Energy Star label. Note that we counted a building as Energy Star if it obtained the 

label at least once. 
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Table 1. The summary of the integrated database 

 

 

 

 

  

City Time	Frame	of	
Real	Estate	Data

Year	of	the	Policy	
Implementation

Number	of	the	ES	
Buildings

Number	of	non-ES	
Buildings

Total	Number	of	
Buildings

NYC 1994	-	2017 2009 160 396 556
D.C. 1993	-	2017 2008 254 188 442
SF 1997	-	2017 2011 144 306 450

Chicago 1996	-	2017 2013 145 147 292
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Chapter 4 Methodology 

4.1 Overview 

This interdisciplinary research is at the interface of building energy efficiency, policy 

planning, and real estate economics, making contributions to each field. In order to achieve the 

research objective of assessing the impact of energy benchmarking policy on the real estate 

performance of office buildings, this study applied two Interrupted Time Series Analyses (ITSA) 

based on the occupancy rates of office buildings in the four cities. The general research process is 

summarized in Figure 4. 

 

Figure 4. The summary of research methodology 
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 To understand better our data, the next section introduces the exploratory data analysis 

based on the integrated database. After that, a single-group ITSA and a multi-group ITSA were 

conducted to serve the research objective. 

 

4.2 Data Description 

In addition to grouping buildings based on their sustainability status (i.e. Energy Star vs. 

non-Energy Star), we also used their building class. Office buildings are generally classified into 

three classes: A, B, and C, with Class A representing the highest quality buildings in each city. 

Buildings are rated based on such parameters as age, building systems (e.g. HVAC), location, how 

well the building is maintained, and amenities. Figure 5 exhibits the number of buildings in each 

class. As shown in Figure 5, except for DC, the other three cities have a similar distribution among 

the number of buildings for each class. The reason Washington DC is different from the other three 

cities for class C buildings is mainly due to data loss caused by data merging.  

 

Figure 5. The number of buildings under each class level 
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We further compared the number of Energy Star buildings with the number of non-Energy 

Star buildings for each class level, as shown in Figure 6. In Class A, the proportion of Energy Star 

buildings is relatively higher, while the proportion of non-Energy Star buildings is higher for Class 

B buildings. Additionally, there are only a few Energy Star Class C buildings, which is expected 

as buildings with better energy efficacy are more likely to achieve a better classification level. The 

subsequent analysis focuses on A and B classes since the number of ES buildings in Class C group 

is very small. 

 

 

Figure 6. The number of ES buildings vs. the number of non-ES buildings under each class level 

 

A variety of variables can be used to measure the real estate performance of office buildings. 

The occupancy rate was chosen because of the relatively high data quality (e.g., absence of missing 

variables) and its better reflection of tenant demand for properties that have or have not embraced 

sustainability. Figures 7 through 10 show the annual trends of average occupancy for each class in 
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each city for Energy Star buildings and non-Energy Star buildings, respectively. For each city, the 

average occupancy rate of Energy Star buildings is lower than that of non-Energy Star buildings.  

 

Figure 7. The trend in the average occupancy of ES buildings vs. non-ES buildings in NYC 

 

 

Figure 8. The trend in the average occupancy of ES buildings vs. non-ES buildings in D.C. 
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Figure 9. The trend in the average occupancy of ES buildings vs. non-ES buildings in SF 

 

 

Figure 10. The trend in the average occupancy of ES buildings vs. non-ES buildings in Chicago 
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the trends shown in Figures 7 through 10. This study applied the Interrupted Time Series Analysis 

(ITSA).  

ITSA is a quasi-experimental method that is widely used to assess if a time series of a 

specified outcome (e.g., occupancy rate) was affected by intervention(s) at a known point(s) in 

time (Bernal et al. 2017; Grimshaw et al. 2000; Harris et al. 2006; Wagner et al 2002). It has 

become increasingly popular in political science, which aims to evaluate the impact of changes in 

laws or regulations on the behavior of people or market (Biglan, Ary and Wagenaar 2000; 

Briesacher et al. 2013; Muller 2004). ITSA is based on the key assumption that data trends remain 

unchanged without interventions. In other words, if there were no interventions, an expected trend 

can be predicted based on the pre-existing trend. A comparison between the expected trend and 

the actual trend observed in the post-intervention period reveals the difference, which provides 

evidence for the impact of the intervention. However, the assumption of the unchanged data trends 

has the risk of yielding biased results, if the time series data is seasonal. As such, the result of 

ITSA may be affected by seasonality. For example, ITSA may detect changes after the policy 

implementation but it is difficult to determine if that change is caused by policy or seasonality. 

Therefore, we need to first adjust the seasonality in our time series data before the ITSA. 

 

4.3.1 Seasonality Adjustment 

The process of adjusting seasonality can be divided into two main steps. In the first step, 

we used Fourier transformation to detect seasonality (Kandlikar 2007). The main purpose of this 

step is to detect the seasonal cycle of our time series data (i.e., occupancy rate). For instance, Table 

2 shows the detection results based on the non-Energy Star data in Chicago. It shows that the data 

has two seasonal cycles, and the main one is 8 years.  
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Table 2. Seasonality of the occupancy of non-ES buildings in Chicago  

 

The next step is to extract seasonality from the time series data through decomposition. 

Seasonality may exist in time series data through two forms – an additive way or a multiplicative 

way.  Figure 11 shows how these two forms work in time series data.  

 

Figure 11. The two forms of time series data decomposition (figure from 

https://anomaly.io/seasonal-trend-decomposition-in-r/) 

 

According to the occupancy rate trends shown in Figures 7 through 10, our time series data 

shows an additive pattern. Based on the seasonal cycle determined from the previous step, the 

original time series data can be decomposed into three parts (i.e., seasonal, trend, and random), 

and we can simply remove the seasonal part from the original data. Figures 12 through 15 show 

the annual trends of the average occupancy for each city after the seasonality adjustment, which 

can be compared with the original trends shown in Figures 7 through 10. A detailed process of 

seasonality adjustment (with code) is included in Appendix 3. 

Order Spec Freq Seasonality (1/freq) 
1st 0.600 0.125 8 years 
2nd 0.325 0.042 24 years 
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Figure 12. The seasonality adjusted trend in the average occupancy of ES buildings vs. non-ES 

buildings in NYC 

 

Figure 13. The seasonality adjusted trend in the average occupancy of ES buildings vs. non-ES 

buildings in D.C. 
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Figure 14. The seasonality adjusted trend in the average occupancy of ES buildings vs. non-ES 

buildings in SF 

 

Figure 15. The seasonality adjusted trend in the average occupancy of ES buildings vs. non-ES 

buildings in Chicago 

 

4.3.2 The multi-group ITSA on two groups of buildings 

When studying the impact of a large-scale intervention (e.g., a policy affecting all buildings 

in a city), researchers often have an effective sample size of N = 1 (treatment group) or N = 2 

(treatment group with a control group) (Linden 2015), and it is common to use an aggregated value 

(e.g., median or mean) to represent the sample in the ITSA. In the present study, the treatment 
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group consists of all the Energy Star buildings of each class for each city, and the mean occupancy 

rate is used as the aggregated outcome variable for the ITSA. 

In addition to the energy policy, many unobserved factors could potentially affect 

occupancy rates. Including a control group in the ITSA can help account for the other confounding 

factors when an exogenous intervention affects all the groups, which is called multiple-group ITSA 

(Linden 2015). The multiple-group ITSA hypothesizes that the level or trend of the outcome 

variables remains unchanged for all groups if no intervention occurs. It assumes the unobserved 

factors affect both groups at the same extent. This study conducted multiple-group ITSA’s for each 

city based on two comparable groups – one control group consisting of the non-Energy Star 

buildings and one treatment group consisting of the Energy Star buildings. By accounting for 

confounding factors, this grouping enables us to focus on investigating how the benchmarking 

policy affected occupancy rates differently between the energy-efficient buildings and their non-

energy-efficient counterparts. The multiple-group ITSA with two groups is based on the following 

regression model (Linden and Adams 2011; Simonton 1977):  

 

𝑌" = 𝛽% + 𝛽'𝑇" + 𝛽)𝑋" + 𝛽+𝑇"𝑋" + 𝛽,𝑍 + 𝛽.𝑍𝑇" + 𝛽/𝑍𝑋" + 𝛽0𝑍𝑇"𝑋" + 𝜀",  (1) 

 

where 𝑌"  is the aggregated outcome variable (average occupancy rate) at each equally spaced 

(annual) time point t, and Z is the dummy variable to indicate the group (0 = control and 1 = 

treatment). In Eq. 1, the first four coefficients, 𝛽% through 𝛽+, refer to the control group, while the 

last four coefficients, 𝛽, through 𝛽0, refer to the treatment group. Specifically, 𝛽% = the intercept 

of the outcome variable; 𝛽' = the coefficient to represent the initial trend before the intervention; 

𝛽) = the level change that occurs immediately after the intervention; 𝛽+ = the continuous change 
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of the trend after the intervention. And, 𝛽, is the difference in the intercept of the outcome variable 

between treatment and control groups before the intervention. 𝛽. is the difference in the trend 

between the two groups before the intervention. 𝛽/ is the difference between the two groups in the 

level change immediately after the intervention. Lastly, 𝛽0  is the difference between the two 

groups in the continuous change of the trend after the intervention.	𝜀" is a random error term. 

To ensure the comparability between the groups, the control and treatment groups should 

not be significantly different in either the initial intercept or the trend of the outcome variable 

before the intervention. Thus, the appropriate control group should have p-values for both 𝛽, and 

𝛽. greater than the required threshold (i.e., 0.05). The p-values of 𝛽) and 𝛽+ show if there are 

significant changes (immediate and continual) of the control group (non-Energy Star group) after 

the intervention. The p-values for 𝛽/ and 𝛽0 then provide statistical evidence on whether the policy 

affects the treatment group differently from the control group. 

 

4.3.3 The single-group ITSA on each building 

There is a potential issue of information loss by using the aggregated data (i.e., average 

occupancy rate). This is because we used the average data to represent the whole sample, which 

limited us in analyzing the policy impacts on each building. To deal with this challenge, we 

expanded the aforementioned analysis by conducting ITSA on each building. In this case, a single-

group ITSA is used. 

The single-group ITSA is a simple version of the multiple-group ITSA, which only 

examines the changes for the treatment group (i.e. occupancy rate of each building). It is based on 

the following model (Huitema and Mckean 2000a; Linden and Adams 2011): 
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𝑌" = 𝛽% + 𝛽'𝑇" + 𝛽)𝑋" + 𝛽+𝑇"𝑋" + 𝜀",  (2) 

 

where 𝑌" is the occupancy rate of each building at year t; 𝑇" is the time since the starting year of 

the database; 𝑋" = the dummy variable to indicate the pre- or post-intervention period (0 = pre-

intervention period and 1 = post-intervention period). It is noted that if we set Z in Eq.1 to 0, the 

two functions become the same. The meanings of the coefficients (i.e. 𝛽' to 𝛽+) in Eq.2 are the 

same as those in Eq.1.  
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Chapter 5 Results 

5.1 The result of the multiple-group ITSA on two groups of buildings 

The multiple-group ITSA was conducted based on the annual average occupancy rates of 

the office buildings for each class and each city, in order to examine the change(s) after the policy 

implementation and then to infer the impact of the benchmarking policy on real estate performance. 

This multi-group analysis specified Energy Star buildings as the treatment group and non-Energy 

Star buildings as the control group.  

 

5.1.1 New York City results 

For Class A buildings, as shown in Table 3(a), the starting level of difference between the 

treatment group and the control group (𝛽,: z) was not significant (P=0.80), and the initial trend 

difference (𝛽.: z_t) was not significant either (P=0.87). As mentioned earlier, the groups with p-

values greater than a specified threshold (i.e., 0.05) for both 𝛽, and 𝛽. in Eq. 1 are preferred, to 

ensure the comparability. Thus, for NYC Class A buildings, the Energy Star group (i.e. treatment 

group) and non-Energy Star group (i.e. control group) behave similar before the policy intervention. 

After the intervention, the occupancy rate of the non-Energy Star group increases by 2.28% 

immediately (𝛽); P=0.001), while that of the Energy Star group drops immediately by 2.50% (𝛽) +

𝛽/; P=0.01). The policy was implemented following the beginning of the financial crisis with Class 

A buildings commissioning the highest rents and the crisis could lead to tenant flight to Class B. 

For the continuous trends (𝛽+ and 𝛽0), there is a slightly increasing trend for the Energy Star 

group’s occupancy rate and a decreasing trend of the non-Energy Star group’s occupancy rate, but 

neither is statistically significant. Note that 𝛽/ and 𝛽0 represent the differences between the Energy 
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Star group and non-Energy Star group rather than the changes of the Energy Star group before and 

after the policy implementation. The results were verified upon the visual display of Figure 16(a). 

For Class B buildings, in Table 3(b), the occupancy rate of the non-Energy Star group 

increases by 2.28% immediately after the policy implementation with a continuously decreasing 

trend (-0.21% per year). The p-values of 𝛽/ and 𝛽0 show that there is no significant difference of 

the trend between the Energy Star and non-Energy Star groups after the intervention. It indicates 

that the occupancy rate of the Energy Star group has also an immediate increase with a continuous 

decreasing trend. The results were also exhibited in Figure 16(b). 

  

Figure 16. (a) ITSA for Class A and (b) ITSA for Class B in New York City 

 

86
88

90
92

94
se

as
on

_a
dj

us
t

1995 2000 2005 2010 2015
year

ES group: Actual Predicted
non-ES group: Actual Predicted

Regression with Newey-West standard errors - lag(1)

Intervention starts: 2009
ITSA (Class A)

88
90

92
94

96
se

as
on

_a
dj

us
t

1995 2000 2005 2010 2015
year

ES group: Actual Predicted
non-ES group: Actual Predicted

Regression with Newey-West standard errors - lag(1)

Intervention starts: 2009
ITSA (Class B)



 

35 

Table 3(a). Multiple-Group ITS Regression Model for Class Level A Buildings in New York 

City 

Regression with Newey-West standard errors 
Maximum lag: 1 

Number of obs = 48 
F (7, 40) = 5.70 
Prob > F = 0.001 

Ave_vacant 
(log_transformed) Coef. 

Newey-
West Std. 

Err. 
t P > |t| [95% Conf. 

Interval] 

𝛽': t -0.026 0.087 -0.30 0.769 -0.20 0.15 
𝛽,: z 0.368 1.446 0.25 0.800 -2.55 3.29 
𝛽.: z_t -0.026 0.159 -0.17 0.870 -0.35 0.29 
𝛽): x2013 2.283 0.662 3.45 0.001 0.95 3.62 
𝛽+: x_t2013 -0.214 0.189 -1.13 0.265 -0.60 0.17 
𝛽/: z_x2013 -4.782 1.912 -2.50 0.017 -8.65 -0.92 
𝛽0: z_x_t2013 0.393 0.415 0.95 0.349 -0.45 1.23 
𝛽% (cons) 91.269 0.892 102.29 0.000 89.47 93.07 

 

Table 3(b). Multiple-Group ITS Regression Model for Class Level B Buildings in New York 

City 

Regression with Newey-West standard errors 
Maximum lag: 1 

Number of obs = 48 
F (7, 40) = 10.90 
Prob > F = 0.001 

Ave_vacant 
(log_transformed) Coef. 

Newey-
West Std. 

Err. 
t P > |t| [95% Conf. 

Interval] 

𝛽': t 0.164 0.080 2.06 0.046 0.00 0.33 
𝛽,: z -0.350 1.726 -0.20 0.840 -3.84 3.14 
𝛽.: z_t -0.075 0.165 -0.46 0.651 -0.41 0.26 
𝛽): x2013 2.619 0.722 3.63 0.001 1.16 4.08 
𝛽+: x_t2013 -0.666 0.201 -3.31 0.002 -1.07 -0.26 
𝛽/: z_x2013 -0.010 1.360 -0.07 0.942 -2.85 2.65 
𝛽0: z_x_t2013 0.077 0.286 0.27 0.788 -0.50 0.66 
𝛽% (cons) 90.411 0.835 108.23 0.000 88.72 92.10 

 

5.1.2 Washington D.C. results 

Table 4 (a) and (b) summarizes the analysis results of the two class levels respectively for 

Washington D.C. For Class A buildings, there is a significant drop of occupancy rate for the non-
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Energy Star group (-6.89%) after the policy implementation. Although the immediate change of 

the Energy Star group is slightly different (1.10%) from that of the non-Energy Star group, it is 

not statistically significant. Thus, the occupancy rate of the Energy Star group also had an 

immediate drop after the policy. Similar to New York City, these drops might also be caused by 

the financial crisis. However, after the policy implementation (year 2008), the occupancy of the 

Energy Star group shows an increasing trend, while the non-Energy Star group has a decreasing 

trend (statistically significant). The results are visualized in Figure 17(a). 

For Class B buildings, the occupancy rates have significant decreasing trends after the 

policy implementation for both groups. However, there is no significant difference between the 

two groups, which implies that the policy affects both Energy Star and non-Energy Star buildings 

to the same extent. Visualization is shown in Figure 17(b). 

 

  

Figure 17. (a) ITSA for Class A and (b) ITSA for Class B in Washington DC 
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Table 4(a). Multiple-Group ITS Regression Model for Class Level A Buildings in Washington 

D.C. 

Regression with Newey-West standard errors 
Maximum lag: 1 

Number of obs = 50 
F (7, 42) = 12.26 
Prob > F = 0.0000 

Ave_vacant 
(log_transformed) Coef. 

Newey-
West Std. 

Err. 
t P > |t| [95% Conf. 

Interval] 

𝛽': t 0.332 0.147 2.27 0.029 0.04 0.63 
𝛽,: z -1.944 1.451 -1.34 0.188 -4.87 0.99 
𝛽.: z_t -0.145 0.199 -0.73 0.469 -0.55 0.26 
𝛽): x2013 -6.895 1.509 -4.57 0.000 -9.94 -3.85 
𝛽+: x_t2013 -0.492 0.161 -3.05 0.004 -0.82 -0,17 
𝛽/: z_x2013 1.107 2.304 0.48 0.633 -3.54 5.76 
𝛽0: z_x_t2013 0.510 0.325 1.57 0.124 -0.15 1.17 
𝛽% (cons) 90.683 1.072 84.61 0.000 88.52 92.85 

 

Table 4(b). Multiple-Group ITS Regression Model for Class Level B Buildings in Washington 

D.C. 

Regression with Newey-West standard errors 
Maximum lag: 1 

Number of obs = 50 
F (7, 42) = 17.65 
Prob > F = 0.0000 

Ave_vacant 
(log_transformed) Coef. 

Newey-
West Std. 

Err. 
t P > |t| [95% Conf. 

Interval] 

𝛽': t 0.389 0.086 4.52 0.000 0.22 0.56 
𝛽,: z -2.545 1.244 -2.05 0.047 -5.06 -0.04 
𝛽.: z_t 0.077 0.135 0.57 0.573 -0.20 0.35 
𝛽): x2013 -1.395 0.934 -1.49 0.143 -3.28 0.49 
𝛽+: x_t2013 -0.774 0.178 -4.36 0.000 -1.13 -0.42 
𝛽/: z_x2013 0.150 1.355 0.11 0.913 -2.58 2.88 
𝛽0: z_x_t2013 -0.197 0.228 -0.87 0.392 -0.66 0.26 
𝛽% (cons) 89.902 0.797 112.74 0.000 88.29 91.51 

 

5.1.3 San Francisco results 

As shown in Table 5(a) and Figure 18(a), for Class A buildings, both groups have an 

increasing trend of occupancy rate (but not statistically significant) after the policy implementation. 
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The results show that there is no significant difference in the trend between these two groups. For 

Class B buildings, after the policy implementation, the occupancy rates of both groups have 

statistically significant increasing trends, and there is no significant difference between the two 

groups, as shown in Table 5(b) and Figure 18(b). 

 

Figure 18. (a) ITSA for Class A and (b) ITSA for Class B in San Francisco 

Table 5(a). Multiple-Group ITS Regression Model for Class Level A Buildings in San Francisco 

Regression with Newey-West standard errors 
Maximum lag: 1 

Number of obs = 42 
F (7, 34) = 2.98 
Prob > F = 0.0152 

Ave_vacant 
(log_transformed) Coef. 

Newey-
West Std. 

Err. 
T P > |t| [95% Conf. 

Interval] 

𝛽': t -0.149 0.388 0.38 0.704 -0.94 0.64 
𝛽,: z 2.863 3.986 0.72 0.478 -5.24 10.96 
𝛽.: z_t -0.229 0.452 -0.51 0.616 -1.15 0.69 
𝛽): x2013 2.776 3.393 0.82 0.419 -4.11 9.67 
𝛽+: x_t2013 1.300 0.820 1.59 0.122 -0.37 2.97 
𝛽/: z_x2013 -0.785 4.018 -0.20 0.846 -8.95 7.38 
𝛽0: z_x_t2013 -0.226 0.977 -0.26 0.795 -2.24 1.73 
𝛽% (cons) 87.969 3.471 25.34 0.000 80.91 95.02 
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Table 5(b). Multiple-Group ITS Regression Model for Class Level B Buildings in SF 

Regression with Newey-West standard errors 
Maximum lag: 1 

Number of obs = 42 
F (7, 34) = 4.12 
Prob > F = 0.0023 

Ave_vacant 
(log_transformed) Coef. 

Newey-
West Std. 

Err. 
t P > |t| [95% Conf. 

Interval] 

𝛽': t -0.238 0.215 -1.11 0.276 -0.675 0.199 
𝛽,: z -1.524 4.023 -0.38 0.707 -9.70 6.65 
𝛽.: z_t -0.397 0.496 -0.80 0.429 -1.41 0.61 
𝛽): x2013 0.919 1.945 0.47 0.640 -3.03 4.87 
𝛽+: x_t2013 1.162 0.470 2.48 0.018 0.21 2.17 
𝛽/: z_x2013 2.626 4.051 0.65 0.521 -5.61 10.86 
𝛽0: z_x_t2013 1.168 0.834 1.40 0.171 -0.53 2.86 
𝛽% (cons) 90.853 1.751 51.90 0.000 87.29 94.41 

 

5.1.4 Chicago results 

As shown in Table 6(a) for Class A buildings, both groups have an increasing trend of 

occupancy after the policy implementation. However, there is a significant difference in the 

immediate change between the two groups. The non-Energy Star group has an immediate jump 

after the implementation. Also, Figure 19(a) visualizes the results. For Class B buildings, the non-

Energy Star group has a significant jump of occupancy after the policy implementation, which is 

different from the Energy Star group. However, the continual trend of non-Energy Star group is 

decreasing after the policy implementation, while the Energy Star group has an increasing trend, 

as shown in Table 6(b) and Figure 19(b). 

 



 

40 

  

Figure 19. (a) ITSA for Class A and (b) ITSA for Class B in Chicago 

Table 6(a). Multiple-Group ITS Regression Model for Class Level A Buildings in Chicago 

Regression with Newey-West standard errors 
Maximum lag: 1 

Number of obs = 44 
F (7, 36) = 11.32 
Prob > F = 0.000 

Ave_vacant 
(log_transformed) Coef. 

Newey-
West Std. 

Err. 
t P > |t| [95% Conf. 

Interval] 

𝛽': t -0.312 0.245 -1.27 0.212 -0.81 0.19 
𝛽,: z 1.076 2.463 0.44 0.665 -3.82 6.07 
𝛽.: z_t -0.048 0.277 -0.17 0.862 -0.61 0.51 
𝛽): x2013 7.378 2.991 2.47 0.019 1.31 13.44 
𝛽+: x_t2013 0.388 0.347 1.12 0.270 -0.31 1.09 
𝛽/: z_x2013 -5.412 3.293 -1.64 0.109 -12.09 1.27 
𝛽0: z_x_t2013 0.551 0.648 0.85 0.401 -0.76 1.86 
𝛽% (cons) 87.757 2.037 43.09 0.000 83.63 91.89 
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Table 6(b). Multiple-Group ITS Regression Model for Class Level B Buildings in Chicago 

Regression with Newey-West standard errors 
Maximum lag: 1 

Number of obs = 44 
F (7, 36) = 11.59 
Prob > F = 0.000 

Ave_vacant 
(log_transformed) Coef. 

Newey-
West Std. 

Err. 
t P > |t| [95% Conf. 

Interval] 

𝛽': t -0.272 0.102 -2.66 0.012 -0.48 -0.06 
𝛽,: z -2.138 1.182 -1.81 0.079 -4.54 0.26 
𝛽.: z_t 0.084 0.131 0.64 0.523 -0.18 0.35 
𝛽): x2013 4.974 1.357 3.67 0.001 2.22 7.73 
𝛽+: x_t2013 -0.353 0.190 -1.86 0.072 -0.74 0.03 
𝛽/: z_x2013 -4.935 1.589 -3.11 0.004 -8.16 -1.71 
𝛽0: z_x_t2013 0.875 0.423 2.07 0.046 0.02 1.73 
𝛽% (cons) 90.928 0.828 109.78 0.000 89.25 92.61 

 

5.2 The result of ITSA on each building 

In order to maximize the use of the collected data, and to avoid any loss of information 

caused by the aggregated-data-based analysis, we adopted the single-group ITSA to examine if the 

implementation of the policy resulted in a shift in the occupancy rate for each building. Based on 

the analysis results, we counted the number of buildings with a statistically significant shift (i.e. 

p-value < 0.05) in the occupancy rate after the policy implementation. Also, among the buildings 

with statistically significant changes, we further counted the number of them with positive changes 

(i.e., the occupancy rate increases after the policy implementation). Table 7 summarized the 

numbers for each city. Note that in Table 7, the column of “Total” means the total number of 

buildings under each group (Energy Star vs. non-Energy Star); the column of “Significant” means 

the number of buildings that have statistically significant changes (either immediately or 

continuously) after the year the policy was implemented; and the columns of “sign & pos” means 

the number of buildings with statistically significant and also positive changes (increase in 

occupancy rate) after the year of policy implementation.  
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 By comparing these totals (i.e., significant and sign & pos) with the total number of 

buildings under the Energy Star group and the non-Energy Star group respectively, two ratios can 

be derived. The first ratio (significant / total) indicates the percentages of buildings that have 

changes in occupancy rate after the policy implementation, and the second ratio (significant and 

positive / significant) indicates the percentage of the buildings that are positively affected by the 

policy among the buildings that have significant changes. The results can be used to infer if the 

policy has different impacts on the real estate performance between the Energy Star and non-

Energy Star groups. Figure 20 shows the corresponding ratios. 

 

Table 7. The number of buildings that are affected (and positively affected) by the policy 

 

 

Total Significant Sign	&	Pos Total Significant Sign	&	Pos
NYC_a 82 41 16 87 45 29
NYC_b 57 23 12 199 83 41
DC_a 169 75 22 74 27 5
DC_b 82 36 9 103 39 9
SF_a 73 29 22 17 6 3
SF_b 64 27 23 196 57 44
Chi_a 82 49 33 20 15 11
Chi_b 59 38 24 83 43 28

ES Non-ES
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Figure 20. The ratios of the buildings that are affected (and positively affected) by the policy 

 

The first ratio (significant/total) can be used to check which type(s) of buildings are more 

likely to have a change in real estate performance after the policy implementation. As shown in 

Figure 20, in New York City, overall the ratios of both groups (Energy Star and non-Energy Star) 

are very close. For Class A buildings, the ratios are approximately 0.5, which implies the real estate 

performances of about half of Class A buildings have significantly changed after the policy 

implementation. For Class B, these ratios are slightly smaller, around 0.4. In Washington D.C. and 

San Francisco, the significant/total ratio of the Energy Star group is higher than that of the non-

Energy Star group, while the difference in this ratio between Class A and Class B is not obvious. 

This indicates that for Washington D.C. and San Francisco, the real estate performance of the 

Energy Star buildings may be more sensitive to the energy policy (i.e. more prone to change) 

compared to the non-Energy Star buildings. For Chicago, both the Energy Star and non-Energy 
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Star Class A buildings have a relatively high significant/total ratio (close to and over 0.7 

respectively), which means occupancy rates of a large proportion of Class A buildings significantly 

changed after the policy implementation. For Class B buildings, the ratio of the Energy Star group 

is very close to that of the Energy Star group in Class A. This implies that for Energy Star buildings, 

the class level may not affect the sensitivity of their real estate performance to the policy. However, 

for non-Energy Star buildings, the ratio of Class A buildings and that of Class B buildings are 

obviously different (0.75 vs. 0.53), which implies that the sensitivity of non-Energy Star buildings’ 

real estate performance to the policy may depend on the building class.  

The second ratios (positive and significant / significant) can be used to check which type(s) 

of buildings are more likely to be positively affected by the energy policy. From Figure 20, in New 

York City, among the buildings that have statistically significant changes in occupancy rate after 

the policy, Class A non-Energy Star buildings have a higher ratio showing positive changes (0.64). 

However, only 39% of Class A Energy Star buildings exhibit an increase in occupancy rate after 

the policy implementation, which means, after the policy implementation, more Class A Energy 

Star buildings have a decreasing trend in occupancy rate.  For Class B buildings, the occupancy 

rates of 52% of Energy Star buildings increased after the policy implementation, which is slightly 

higher than non-Energy Star buildings (49%). In Washington D.C., the ‘significant and positive / 

significant’ ratios of both Energy Star and non-Energy Star groups are relatively low, which 

implies that more buildings experienced declines in occupancy rate after 2008 (the year of the 

energy policy implementation). This low ratio might have been caused by other confounding 

factors, such as the financial crisis. However, it is noted that the ratio of the Energy Star group is 

higher than that of non-Energy Star group for Class A buildings, which implies that Energy Star 

buildings are more likely to be positively affected by the policy. For Class A buildings in San 
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Francisco, the ‘significant and positive / significant’ ratio of the Energy Star group is 

approximately 0.76, while that of the non-Energy Star group is only 0.5. This implies that after the 

policy implementation, Energy Star buildings tend to have better improvement in real estate 

performance. In Chicago, the ‘significant and positive / significant’ ratios of both groups for Class 

A buildings are relatively high, which shows that the policy generally has a positive influence on 

Class A buildings, with the influence not being substantially different between the Energy Star and 

non-Energy Star groups. For Class B buildings, 53% of Energy Star buildings exhibit an increase 

in occupancy rates after the policy implementation, which is lower than the ratio of non-Energy 

Star buildings (68%). 

 

5.3 Discussion 

According to the multiple-group ITSA on the average occupancy rate, the results are mixed 

with New York City and Washington D.C., showing that the occupancy rate of Class A Energy 

Star buildings fell immediately after the policy implementation and then recovered with a gradual 

upward trend. In contrast, the Class A non-Energy Star buildings exhibited a gradually decreasing 

trend after the policy implementation. According to the ITSA, however, there was no statistical 

evidence of a continuous occupancy rate trend difference between the two groups after the policy 

implementation. These effects may have their roots in the financial crisis as the implementation 

happened in 2008 and 2009 respectively and rents are much higher in these properties.  On the 

other hand, the Class A buildings (both Energy Star and non-Energy Star) in San Francisco and 

Chicago show an increase of occupancy after the policy implementation. For Class B buildings, 

the multiple-group ITSA shows that New York City and Washington DC experienced a decreasing 

trend in occupancy rate after the policy implementation, while San Francisco experienced an 
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increase. There is also no evidence to indicate that occupancy rates performed differently between 

Energy Star and non-Energy Star groups for the aforementioned cities. Chicago is the only city 

with statistically significant differences between the two groups (Figure 19(b) and Table 6(b)).  

The results from the single-group ITSA complemented the previous analysis. For Class A 

buildings, the grouping of Washington D.C. with New York City as well as San Francisco with 

Chicago are maintained with the former showing a slower occupancy increase than the latter. For 

Class B buildings, in contrast to all other cities, Washington D.C. maintains a smaller ratio of the 

buildings that have the increasing occupancy. Again, the financial crisis may be a confounding 

factor for the result. 

As a preliminary study, limitations of this study should be acknowledged. Due to the 

limited data availability, the established model may not fully capture the trend of occupancy rate 

before the policy implementation and therefore will limit the forecast of the trend after the policy 

implementation. With more available data points in the future, a more sophisticated ARIMA 

(autoregressive integrated moving average) model could improve the forecast accuracy. 

Additionally, an external confounding factor such as the financial crisis may have affected our 

analysis results significantly.   
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Chapter 6 Conclusion and Future Research 

6.1 Future Research 

The current study was limited to assessing the effectiveness of energy policies on the real 

estate performance of office buildings, but not on the energy consumption performance. This is 

because the energy consumption data is publicly available only after the policy implementation, 

and data prior to the policy implementation are not disclosed. As such, ITSA is not applicable. 

However, we have already done a series of exploratory analyses based on the available energy 

consumption database. For example, we compared the energy consumption among different sizes 

of buildings (Figure 21 shows an example of New York City). A full exploratory analysis of the 

energy consumption database is included in Appendix 4. In the next phase, an analysis of energy 

consumption data will be included to assess the relationship between the policy and the energy 

performance. 

 

 

Figure 21. Boxplots of the Source EUI for each year grouped by building area size in NYC 
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Additionally, more building features, such as rents and/or sale prices, frequency of 

transactions, and type of owner, can be added to the current regression model to increase the 

prediction accuracy of the model. Also, in order to deal with the confounding effects, a more 

sophisticated analysis can be performed by comparing the real estate performance of buildings that 

do not disclose energy performance with those that do. 

 

6.2 Conclusion 

The implementation of energy benchmarking and disclosure policies aim to raise 

awareness of energy-efficient properties among owners, investors, and tenants. Consequently, they 

are expected to motivate owners of less energy efficient buildings to invest in energy retrofits to 

improve the energy and sustainability performance of their buildings. However, there has been no 

study on assessing the impact of such policies in relation to the real estate performance of office 

buildings.  

To contribute to the body of knowledge in sustainability, public policy, and real estate, this 

research investigated the impacts of the benchmarking policy on real estate performances by 

applying two ITSAs to office buildings in four cities across the U.S., namely, New York City, 

Washington D.C., San Francisco, and Chicago. The first analysis assessed the impact of the policy 

on real estate performances between energy-efficient and non-energy-efficient buildings based on 

the aggregated data (i.e. the mean of occupancy rates) by using the multi-group ITSA. To avoid 

the potential issue of information loss due to the use of aggregated data, the second analysis 

focused on the impact of the policy on real estate performance of each building using the single-

group ITSA and counted how many buildings under each group showed statistically significant 

and positive results. 
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Generally, the results revealed that for some cities, the Energy Star buildings have better 

real estate performances for both analyses, but it is hard to conclude that the policy impacts on 

Energy Star buildings are more positive than non-Energy Star buildings. Specifically, the results 

obtained from the first analysis revealed that the energy policies might not immediately affect the 

real estate performance of office buildings. However, after the policy implementation, the real 

estate performances of energy-efficient buildings exhibit continuously increasing trends, which is 

evidenced by the ITSA of all the four cities. The results are mixed for New York City, while 

Washington DC exhibited a decline in the real estate performance after the policy implementation. 

This effect may also have its roots in the financial crisis as the implementation happened in 2008 

and 2009 for the first group of cities with rents being much higher in these properties.  

The result from the single-group ITSA is consistent with the result of the first analysis. For 

the cities of San Francisco and Chicago, the energy-efficient buildings have higher ratios of the 

‘positive and significant / significant’, which implies that the energy-efficient buildings are more 

likely to be positively affected by the policy. However, such ratios are relatively low for New York 

and Washington DC, which may be caused by other confounding factors, such as the financial 

crisis. In the future, more sophisticated analyses are needed to account for the confounding effects, 

such as including control-group cities without disclosure policies in the analyses. 
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